Evaluation of the effect of meteorological variables on the thermal performance of a residential building based on monitored data
Evaluación del efecto de las Variables Meteorológicas en el desempeño Térmico de una Edificación residencial a Partir de Datos Monitoreados
How to Cite
Download Citation
Show authors biography
Similar Articles
- Kleber Zhañay, Cristian Leiva, Erika Pilataxi, William Quitiaquez, Wear - Sediment Quantity Correlation Model for Preventive Maintenance Scheduling of a Hydroelectric Power Plant , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Linear Regression for the Identification of the Maximum Power Point in Hybrid Microgrids Implemented in HYPERSIM , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Flavio Villacrés, Alexis Torres, Marlon Chamba, Carlos Lozada, Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Analysis and Characterization of Power Quality using Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Isaac Simbaña, William Quitiaquez, Patricio Cabezas, Patricio Quitiaquez, Comparative study of the efficiency of rectangular and triangular flat plate solar collectors through finite element method , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Alex Villamarín Jácome, Miguel Saltos, Juan Echever, Optimal Sizing of Photovoltaic and Battery Energy Systems in Residential Environments to Reduce Dependence on Centralized Electricity Infrastructure , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Johnny Heredia, Edy Ayala , IoT and AI-Based Predictive Maintenance System Design for Express Auto Repair Shops , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- William Quitiaquez, Hugo Meneses, Patricio Quitiaquez, Isaac Simbaña, Regeneration of Deteriorated Internal Combustion Engine Components used in Thermal Power Plants , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Paulo Castro, Jaime Cepeda, Impact Analysis of Non-Dispatchable Renewable Energies Penetration in Power System Operational Security , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Josue Ortiz, Jefferson Tayupanda, Carlos Quinatoa, Solution to the short-term hydrothermal dispatch problem through nonlinear programming applied to single and multi-node systems , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Catalina Vallejo, Luis Godoy, Francis Vásquez, Geovanna Villacreses, Marco Orozco, Santiago Navarro, Strategies for Enhancing Energy Efficiency in Public Service Buildings within a Hot and Humid Climatic Zone: A Case Study in Guayaquil, Ecuador , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Lisseth Jami, Catalina Vallejo, Francis Vásquez, Luis Condo, Luis Godoy, Methodology of association of cadastral and electrical information using GIS and SQL tools: Case study in Quito Ecuador , Revista Técnica "energía": Vol. 19 No. 1 (2022): Revista Técnica "energía", Edición No. 19, ISSUE I
Strategies to promote the efficient use of energy and thermal comfort have been actions applied worldwide. Being the variation of temperature a worrying factor for governments due to the influence to achieve the energy goals proposed by the SDGs. In this sense, the thermal behavior inside a building could be related to external conditions and can be estimated through energy simulation tools. However, the results present different levels of uncertainty due to the quality of the meteorological data, the properties of materials, the occupation patterns, as well as the complexity of generating thermal evaluation processes. Against this, experimental measurements to evaluate the real state of a building and thus predict its behavior with respect to the meteorology can have a great contribution. In this context, this study develops a methodology to evaluate the incidence of climate in the thermal behavior of a building. The evaluation is carried out in an experimental prototype house located in an equatorial region monitored for approximately one year. With the available data, validated linear regression models were developed to estimate the behavior of the interior temperature as a function of one or more environmental variables. The results of the internal air temperature prediction model show an R2 of 0.41, in the worst case when only ambient temperature is available for the prediction, and an experimental error of 10%. Therefore, the methodology can be replicated in buildings of different uses, climate and adjusted to the availability of data.
Article visits 1093 | PDF visits 508
Downloads
[1] International Energy Agency, “Key World Energy Statistics 2015,” p. 81, 2015.
[2] International Energy Agency, “World Energy Outlook,” IEA, p. 14, 2018.
[3] N. Watts et al., “The <em>Lancet</em> Countdown on health and climate change: from 25 years of inaction to a global transformation for public health,” Lancet, vol. 391, no. 10120, pp. 581–630, Feb. 2018.
[4] T. Hong, W.-K. Chang, and H.-W. Lin, “A fresh look at weather impact on peak electricity demand and energy use of buildings using 30-year actual weather data,” Appl. Energy, vol. 111, pp. 333–350, 2013.
[5] C. Carpino, D. Mora, N. Arcuri, and M. De Simone, “Behavioral variables and occupancy patterns in the design and modeling of Nearly Zero Energy Buildings,” Build. Simul., vol. 10, no. 6, pp. 875–888, 2017.
[6] Z. Afroz, H. Burak Gunay, and W. O’Brien, “A review of data collection and analysis requirements for certified green buildings,” Energy Build., vol. 226, p. 110367, 2020.
[7] F. Apadula, A. Bassini, A. Elli, and S. Scapin, “Relationships between meteorological variables and monthly electricity demand,” Appl. Energy, vol. 98, pp. 346–356, 2012.
[8] E. Galindo, Estadística, metodos y aplicaciones para administración e ingeniería. Quito, 2008.
[9] H. A. Quevedo Urías, Estadística para inegeniería y ciencias, Primera. México, 2014.
[10] D. Jijón, J. Constante, M. Moya, and G. Guerrón, “Métodos para homogenizar y rellenar datos de viento de la torre meteorológica del Parque Eólico Villonaco en Loja-Ecuador,” Av. en Ciencias e Ing., vol. 7, no. 2, 2015.
[11] F. J. Entrena González, Determinación del potencial solar (UF0212), IC Editori. 2013.
[12] S. Walter Stachú, “Identificación de la problemática mediante Pareto e Ishikawa,” 2000.
[13] S. Asadi, S. S. Amiri, and M. Mottahedi, “On the development of multi-linear regression analysis to assess energy consumption in the early stages of building design,” Energy Build., vol. 85, pp. 246–255, 2014.
[14] P. Vining Montgomery, Introducción al Análisis de Regresión Lineal, Continenta. 2006.














