Skip to main navigation menu Skip to main content Skip to site footer

Evaluation of the gasoline engines behavior by the air flow simulation through the throttle body

Evaluación del Comportamiento de Motores a Gasolina Mediante Simulación del Flujo de Aire a Través del Cuerpo de Aceleración




Section
PRODUCCIÓN Y USO DE LA ENERGÍA

How to Cite
Evaluation of the gasoline engines behavior by the air flow simulation through the throttle body. (2023). Revista Técnica "energía", 20(1), PP. 100-108. https://doi.org/10.37116/revistaenergia.v20.n1.2023.583

Dimensions
PlumX

How to Cite

Evaluation of the gasoline engines behavior by the air flow simulation through the throttle body. (2023). Revista Técnica "energía", 20(1), PP. 100-108. https://doi.org/10.37116/revistaenergia.v20.n1.2023.583

Download Citation


Similar Articles

1-10 of 470

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

1 2 > >> 

This investigation analyzed the throttle body of a 1.1 L small gasoline engine. The electronic control module receives the information from sensors, pressure, temperature, and throttle valve position, to do calculations, determining the amount of necessary fuel injection to produce combustion. The objective of this work was to increase the airflow that enters to the intake manifold, by using computational fluid dynamics (CFD). Two butterfly valve models were analyzed, the original one, where the internal behavior of the throttle body was studied, in pressures and flows. While the second one was a modified model, with a cut in the axis of rotation, to propose an increase in the air flow to the intake manifold. Four simulations were carried out, with a relative opening of 0, 20, 40 and 78 %, obtaining average pressure values between 31.35 to 70.05 kPa, besides average flows at the outlet of the intake body of 6.72 to 58.71 g·m-1 as the throttle valve opens. For data validation, the obtained outlet pressures with the absolute pressure sensor of the intake manifold were compared to the simulation values. Without having experimental data for the mass flow rate, the analysis was developed between the two simulated models, with an average flow rate of 28.22 g·m-1 and an increase of 9% in mass flow rate in the modified body. As the throttle opening increases, the pressure values become similar.


Article visits 1005 | PDF visits 362


Downloads

Download data is not yet available.
  1. A. S. Patil, V. G. Halbe, and K. C. Vora, “A System Approach to Automotive Air Intake System Development,” SAE Tech. Pap., vol. 2005-Janua, no. January, 2005, doi: 10.4271/2005-26-011.
  2. T. Sinigaglia, M. Eduardo Santos Martins, and J. Cezar Mairesse Siluk, “Technological evolution of internal combustion engine vehicle: A patent data analysis,” Appl. Energy, vol. 306, p. 118003, Jan. 2022, doi: 10.1016/J.APENERGY.2021.118003.
  3. I. Simbaña, W. Quitiaquez, J. Estupiñán, F. Toapanta-Ramos y L. Ramírez, "Evaluación del rendimiento de una bomba de calor de expansión directa asistida por energía solar mediante simulación numérica del proceso de estrangulamiento en el dispositivo de expansión," Revista Técnica Energía, vol. 19, nº 1, pp. 110-119, 2022, doi: 10.37116/revistaenergia.v19.n1.2022.524.
  4. W. Ashraf, S. Khedr, A. Diab, and H. Elzaabalawy, “Effect of Replacement of Butterfly Throttle Body by Barrel Throttle Body on Mass Flow Rate using CFD,” SAE Tech. Pap., vol. 2017-March, no. March, 2017, doi: 10.4271/2017-01-1078.
  5. N. Vinoth, V. Mohanavel, A. Kannappan, and K. Mohith, “CFD modelling of carburetor with several valve positions,” Mater. Today Proc., vol. 37, no. Part 2, pp. 1535–1549, 2020, doi: 10.1016/j.matpr.2020.07.149.
  6. A. Hassantabar, A. Najjaran, and M. Farzaneh-Gord, “Investigating the effect of engine speed and flight altitude on the performance of throttle body injection (TBI) system of a two-stroke air-powered engine,” Aerosp. Sci. Technol., vol. 86, pp. 375–386, 2019, doi: 10.1016/j.ast.2019.01.006.
  7. J. Suresh Kumar, V. Ganesan, J. M. Mallikarjuna, and S. Govindarajan, “Design and optimization of a throttle body assembly by CFD analysis,” Indian J. Eng. Mater. Sci., vol. 20, no. 5, pp. 350–360, 2013.
  8. C. Xu and H. Cho, “The Analysis of Influence of Throttle Body on Engine Intake System,” Int. J. Eng. Technol., vol. 9, no. 5, pp. 3481–3486, 2017, doi: 10.21817/ijet/2017/v9i5/170905048.
  9. C. D. E. Catalu, J. N. Cerc, and S. Industriales, “Gestión de la mezcla aire-gasolina,” 1999.
  10. G. Ahmadi-Assalemi et al., “Optimising driver profiling through behaviour modelling of in-car sensor and global positioning system data,” Comput. Electr. Eng., vol. 91, February, p. 107047, 2021, doi: 10.1016/j.compeleceng.2021.107047.
  11. J. Martínez, L. Robles, F. Montalvo, D. Baño Morales, and I. Zambrano, “Effects of altitude in the performance of a spark ignition internal combustion engine,” Mater. Today Proc., vol. 49, pp. 72–78, 2022, doi: 10.1016/j.matpr.2021.07.475.
  12. A. Nigro, A. Algieri, C. De Bartolo, and S. Bova, “Fluid dynamic investigation of innovative
  13. intake strategies for multivalve internal combustion engines,” Int. J. Mech. Sci., vol. 123, no. January, pp. 297–310, 2017, doi: 10.1016/j.ijmecsci.2017.02.018.
  14. M. McHarek, T. Azib, M. Hammadi, C. Larouci, and J. Y. Choley, “Multiphysical design approach for automotive electronic throttle body,” IEEE Trans. Ind. Electron., vol. 67, no. 8, pp. 6752–6761, 2020, doi: 10.1109/TIE.2019.2939999.
  15. Q. R. Butt, A. I. Bhatti, M. R. Mufti, M. A. Rizvi, and I. Awan, “Modeling and online parameter estimation of intake manifold in gasoline engines using sliding mode observer,” Simul. Model. Pract. Theory, vol. 32, pp. 138–154, 2013, doi: 10.1016/j.simpat.2012.12.001.
  16. M. Bordjane, “Numerical Investigation Of Throttle Valve Flow Characteristics For Internal Combustion Engines,” J. Multidiscip. Eng. Sci. Technol., vol. 2, no. 12, pp. 3159–3199, 2015, [Online]. Available: www.jmest.org.
  17. J. Katz, “Introduction to Computational Fluid Dynamics,” Introd. Fluid Mech.. January, pp. 324–342, 2012, doi: 10.1017/cbo9780511761348.011.
  18. W. Quitiaquez, J. Estupinan-Campos, C. A. Isaza-Roldan, C. Nieto-Londono, P. Quitiaquez, and F. Toapanta-Ramos, “Numerical simulation of a collector/evaporator for direct-expansion solar-assisted heat pump,” 2020 Ieee Andescon, Andescon 2020, pp. 1–6, 2020, doi: 10.1109/ANDESCON50619.2020.9272139.
  19. W. Quitiaquez, J. Estupiñan-Campos, C. A. Isaza Roldán, F. Toapanta-Ramos, and A. Lobato-Campoverde, “Análisis numérico de un sistema de calentamiento de agua utilizando un colector solar de placa plana,” Ingenius, no. 24, pp. 97–106, 2020, doi: 10.17163/ingenius.n24.2020.10.
  20. W. Quitiaquez, I. Simbaña, R. Caizatoa, C. Isaza, C. Nieto, P. Quitiaquez y F. Toapanta, "Análisis del rendimiento termodinámico de una bomba de calor asistida por energía solar utilizando un condensador con recirculación," Revista Técnica Energía, vol. 16, nº 2, pp. 111-125, 2020, doi: 10.37116/revistaenergia.v16.n2.2020.358
  21. M. Balaji, K. Amal Satheesh, G. Sanjay, and H. K. Job, “Design of throttle body: A comparative study of different shaft profiles using CFD analysis,” Int. J. Chem. Sci., vol. 14, pp. 681–686, 2016.
  22. M. I. Rounaque and S.Rajesh, “CFD Analysis of Flow through a Throttle Body of Spark Ignition Engine for Different Throttle Valve Configuration,” Int. J. Res., vol. 06, no. 13, pp. 1046–1052, 2019.
Sistema OJS 3.4.0.9