Estudio Numérico con CFD de la Refrigeración en una Cabina Vehicular con dos Refrigerantes R32 y R600a
Contenido principal del artículo
Resumen
El objetivo de esta investigación se centra la solución numérica, simulación y comportamiento térmico de los refrigerantes R32 y R600a, siendo el primero un refrigerante industrial y el otro un hidrocarburo, el elemento a estudiar es la temperatura interna de una cabina vehicular, el aire cruza el evaporador del sistema de aire acondicionado mediante el análisis del intercambiador de calor de flujo cruzado tipo serpentín. Asimismo, es importante conocer la transferencia de calor que tiene cada refrigerante para enfriar o calentar la cabina del vehículo, para en un análisis matemático posterior llevar un contraste de la información mediante la simulación numérica de fluidos CFD con un software especializado en este caso Fluent de ANSYS. Se encontró que el refrigerante R600a es una alternativa para los sistemas de aire acondicionado vehicular y el R32 no es tan aplicable para estos casos.
Descargas
Detalles del artículo
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Citas
D. Schmeling and J. Bosbach, “On the influence of sensible heat release on displacement ventilation in a train compartment,” Building and Environment, vol. 125, pp. 248–260, 2017, doi: 10.1016/j.buildenv.2017.08.039.
D. Cajo-Toctaquiza, D. C. Vásconez-Núñez, P. Montúfar-Paz, and F. M. Tello-Oquendo, “Influencia de la geometría y tamaño de las rejillas de salida del aire acondicionado en la distribución de temperaturas en el habitáculo de un vehículo,” vol. 9, pp. 1418–1443, 2023, doi: 10.23857/dc.v9i1.
T. Han and K. H. Chen, “Assessment of various environmental thermal loads on passenger compartment soak and cool-down analyses,” SAE Technical Papers, vol. 3, no. 1, pp. 830–841, 2009, doi: 10.4271/2009-01-1148.
Z. Chang, K. Yi, and W. Liu, “A new ventilation mode of air conditioning in subway vehicles and its air distribution performance,” Energy and Built Environment, vol. 2, no. 1, pp. 94–104, 2021, doi: 10.1016/j.enbenv.2020.06.005.
E. Z. E. Conceição, C. I. M. Santiago, M. M. J. R. Lúcio, and H. B. Awbi, “Predicting the air quality, thermal comfort and draught risk for a virtual classroom with desk-type personalized ventilation systems,” Buildings, vol. 8, no. 2, 2018, doi: 10.3390/buildings8020035.
S. Khatoon and M. H. Kim, “Human thermal comfort and heat removal efficiency for ventilation variants in passenger cars,” Energies, vol. 10, no. 11, 2017, doi: 10.3390/en10111710.
I. Reda, E. E. Khalil, T. M. Aboudeif, and A. El Degwy, “Air Flow Regimes and Thermal Comfort in Vehicle Cabin Considering Solar Radiation,” Fluid Mechanics: Open Access, vol. 04, no. 04, 2017, doi: 10.4172/2476-2296.1000174.
B. Zhang, T. Xue, and N. Hu, “Analysis and improvement of the comfort performance of a car’s indoor environment based on the predicted mean vote-predicted percentage of dissatisfied and air age,” Advances in Mechanical Engineering, vol. 9, no. 4, pp. 1–10, 2017, doi: 10.1177/1687814017695693.
T. Dehne, P. Lange, A. Volkmann, D. Schmeling, M. Konstantinov, and J. Bosbach, “Vertical ventilation concepts for future passenger cars,” Building and Environment, vol. 129, no. November 2017, pp. 142–153, 2018, doi: 10.1016/j.buildenv.2017.11.024.
H. K. Hsieh and T. P. Teng, “Retrofit assessment of automobile air conditioners using hydrocarbon refrigerants,” Applied Thermal Engineering, vol. 214, no. June 2022, p. 118781, 2022, doi: 10.1016/j.applthermaleng.2022.118781.
K. Harby, “Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview,” Renewable and Sustainable Energy Reviews, vol. 73, no. December 2015, pp. 1247–1264, 2017, doi: 10.1016/j.rser.2017.02.039.
D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, and E. Torrella, “Évaluation de la performance énergétique du R1234yf, du R1234ze(E), du R600a, du R290 et du R152a comme alternatives à faible GWP au R134a,” International Journal of Refrigeration, vol. 74, no. 2017, pp. 267–280, 2017, doi: 10.1016/j.ijrefrig.2016.09.020.
F. Toapanta, W. Quitiaquez, and C. Tamay, “Numerical analysis by CFD for the forced boiling process with isobutane circulating through square tubes,” Revista Técnica “energía,” vol. 19, no. 2, pp. 110–118, 2023, doi: 10.37116/revistaenergia.v19.n2.2023.534.
Y. Zou and P. Hrnjak, “Comparing Distribution of R32 ( Low GWP ), R410A , R134a and R245fa in the Vertical Header of a Reversible Microchannel Heat Exchange — Affecting HX Performance,” ASHRAE Annual Conference, vol. 32, no. 2011, pp. 1–9, 2015.
P. H. Hưng and N. Đ. Lợi, “MÔI CHẤT LẠNH R32, TÍNH CHẤT NHIỆT ĐỘNG, BẢNG, ĐỒ THỊ VÀ KHẢ NĂNG ỨNG DỤNG,” Journal of Science and Technology, vol. 14, no. 2013, pp. 54–65, 2014.
A. Başaran, “Experimental investigation of R600a as a low GWP substitute to R134a in the closed-loop two-phase thermosyphon of the mini thermoelectric refrigerator,” Applied Thermal Engineering, vol. 211, no. April, 2022, doi: 10.1016/j.applthermaleng.2022.118501.
S. Nandiati, M. Kirom, and T. Ajiwiguna, “Evaluasi Kinerja Pada Berbagai Variasi Susunan Heat Exchanger Menggunakan Metode LMTD Dan NTU,” e-Proceeding Eng, vol. 6, no. 2, pp. 5058--5065, 2019.
H. A. Navarro and L. C. Cabezas-Gómez, “Effectiveness-ntu computation with a mathematical model for cross-flow heat exchangers,” Brazilian Journal of Chemical Engineering, vol. 24, no. 4, pp. 509–521, 2007, doi: 10.1590/S0104-66322007000400005.