Numerical Study with CFD of the Refrigeration in a Vehicle Cabin with two Refrigerants R32 and R600a

Main Article Content

Fernando Toapanta
https://orcid.org/0000-0002-0838-4702
Melany Oña
https://orcid.org/0009-0009-8768-8891

Abstract

The objective of this research focuses on the numerical solution, simulation, and thermal behavior of the refrigerants R32 and R600a, the first being an industrial refrigerant and the other a hydrocarbon, the element to be studied is the internal temperature of a vehicle cabin, the air crosses the evaporator of the air conditioning system by analyzing the coil-type crossflow heat exchanger. Likewise, it is important to know the energy capacity that each refrigerant has to cool or heat the vehicle cabin to, after a mathematical analysis, contrast the information through numerical simulation of CFD fluids with specialized software in this case Fluent from ANSYS.

Downloads

Download data is not yet available.

Article Details

How to Cite
Toapanta, F., & Oña, M. (2024). Numerical Study with CFD of the Refrigeration in a Vehicle Cabin with two Refrigerants R32 and R600a. Revista Técnica "energía", 21(1), PP. 114–121. https://doi.org/10.37116/revistaenergia.v21.n1.2024.636
Section
EFICIENCIA ENERGÉTICA

References

D. Schmeling and J. Bosbach, “On the influence of sensible heat release on displacement ventilation in a train compartment,” Building and Environment, vol. 125, pp. 248–260, 2017, doi: 10.1016/j.buildenv.2017.08.039.

D. Cajo-Toctaquiza, D. C. Vásconez-Núñez, P. Montúfar-Paz, and F. M. Tello-Oquendo, “Influencia de la geometría y tamaño de las rejillas de salida del aire acondicionado en la distribución de temperaturas en el habitáculo de un vehículo,” vol. 9, pp. 1418–1443, 2023, doi: 10.23857/dc.v9i1.

T. Han and K. H. Chen, “Assessment of various environmental thermal loads on passenger compartment soak and cool-down analyses,” SAE Technical Papers, vol. 3, no. 1, pp. 830–841, 2009, doi: 10.4271/2009-01-1148.

Z. Chang, K. Yi, and W. Liu, “A new ventilation mode of air conditioning in subway vehicles and its air distribution performance,” Energy and Built Environment, vol. 2, no. 1, pp. 94–104, 2021, doi: 10.1016/j.enbenv.2020.06.005.

E. Z. E. Conceição, C. I. M. Santiago, M. M. J. R. Lúcio, and H. B. Awbi, “Predicting the air quality, thermal comfort and draught risk for a virtual classroom with desk-type personalized ventilation systems,” Buildings, vol. 8, no. 2, 2018, doi: 10.3390/buildings8020035.

S. Khatoon and M. H. Kim, “Human thermal comfort and heat removal efficiency for ventilation variants in passenger cars,” Energies, vol. 10, no. 11, 2017, doi: 10.3390/en10111710.

I. Reda, E. E. Khalil, T. M. Aboudeif, and A. El Degwy, “Air Flow Regimes and Thermal Comfort in Vehicle Cabin Considering Solar Radiation,” Fluid Mechanics: Open Access, vol. 04, no. 04, 2017, doi: 10.4172/2476-2296.1000174.

B. Zhang, T. Xue, and N. Hu, “Analysis and improvement of the comfort performance of a car’s indoor environment based on the predicted mean vote-predicted percentage of dissatisfied and air age,” Advances in Mechanical Engineering, vol. 9, no. 4, pp. 1–10, 2017, doi: 10.1177/1687814017695693.

T. Dehne, P. Lange, A. Volkmann, D. Schmeling, M. Konstantinov, and J. Bosbach, “Vertical ventilation concepts for future passenger cars,” Building and Environment, vol. 129, no. November 2017, pp. 142–153, 2018, doi: 10.1016/j.buildenv.2017.11.024.

H. K. Hsieh and T. P. Teng, “Retrofit assessment of automobile air conditioners using hydrocarbon refrigerants,” Applied Thermal Engineering, vol. 214, no. June 2022, p. 118781, 2022, doi: 10.1016/j.applthermaleng.2022.118781.

K. Harby, “Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants: An updated overview,” Renewable and Sustainable Energy Reviews, vol. 73, no. December 2015, pp. 1247–1264, 2017, doi: 10.1016/j.rser.2017.02.039.

D. Sánchez, R. Cabello, R. Llopis, I. Arauzo, J. Catalán-Gil, and E. Torrella, “Évaluation de la performance énergétique du R1234yf, du R1234ze(E), du R600a, du R290 et du R152a comme alternatives à faible GWP au R134a,” International Journal of Refrigeration, vol. 74, no. 2017, pp. 267–280, 2017, doi: 10.1016/j.ijrefrig.2016.09.020.

F. Toapanta, W. Quitiaquez, and C. Tamay, “Numerical analysis by CFD for the forced boiling process with isobutane circulating through square tubes,” Revista Técnica “energía,” vol. 19, no. 2, pp. 110–118, 2023, doi: 10.37116/revistaenergia.v19.n2.2023.534.

Y. Zou and P. Hrnjak, “Comparing Distribution of R32 ( Low GWP ), R410A , R134a and R245fa in the Vertical Header of a Reversible Microchannel Heat Exchange — Affecting HX Performance,” ASHRAE Annual Conference, vol. 32, no. 2011, pp. 1–9, 2015.

P. H. Hưng and N. Đ. Lợi, “MÔI CHẤT LẠNH R32, TÍNH CHẤT NHIỆT ĐỘNG, BẢNG, ĐỒ THỊ VÀ KHẢ NĂNG ỨNG DỤNG,” Journal of Science and Technology, vol. 14, no. 2013, pp. 54–65, 2014.

A. Başaran, “Experimental investigation of R600a as a low GWP substitute to R134a in the closed-loop two-phase thermosyphon of the mini thermoelectric refrigerator,” Applied Thermal Engineering, vol. 211, no. April, 2022, doi: 10.1016/j.applthermaleng.2022.118501.

S. Nandiati, M. Kirom, and T. Ajiwiguna, “Evaluasi Kinerja Pada Berbagai Variasi Susunan Heat Exchanger Menggunakan Metode LMTD Dan NTU,” e-Proceeding Eng, vol. 6, no. 2, pp. 5058--5065, 2019.

H. A. Navarro and L. C. Cabezas-Gómez, “Effectiveness-ntu computation with a mathematical model for cross-flow heat exchangers,” Brazilian Journal of Chemical Engineering, vol. 24, no. 4, pp. 509–521, 2007, doi: 10.1590/S0104-66322007000400005.

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.