Skip to main navigation menu Skip to main content Skip to site footer

Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression

Estrategia Adaptativa para el Alivio de Carga en Sistemas Eléctricos de Potencia Basada en Regresión Lineal




Section
TECNOLÓGICOS E INNOVACIÓN

How to Cite
Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression. (2025). Revista Técnica "energía", 22(1), PP. 62-69. https://doi.org/10.37116/revistaenergia.v22.n1.2025.701

Dimensions
PlumX

How to Cite

Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression. (2025). Revista Técnica "energía", 22(1), PP. 62-69. https://doi.org/10.37116/revistaenergia.v22.n1.2025.701

Download Citation


Alexis Torres


Similar Articles

1-10 of 470

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)

The balance between generation and demand is essential for frequency stability in electrical power systems. However, the increasing penetration of intermittent renewables has reduced the inertia of the system, exposing limitations in traditional frequency control schemes. To meet this challenge, an adaptive load relief scheme, based on the rate of change of frequency (ROCOF) and equivalent inertia, optimized by linear regression to enhance the system's response to contingencies, is suggested. The proposal is validated in the IEEE system of 39 bars, assessing N-1 contingencies and different levels of inertia. This research work demonstrates that the proposed scheme allows a more efficient frequency recovery with less load disconnection, surpassing conventional methods. In addition, the adaptive approach strengthens the resilience of the system, making it more flexible without compromising operational stability. This study highlights the need for smart, data-driven solutions to strengthen the stability of electricity systems, ensuring a safer and more sustainable supply in the context of adaptive electricity systems.


Article visits 519 | PDF visits 92


Downloads

Download data is not yet available.
  1. P. Kundur y N. J. Balu, Power System Stability and Control. McGraw-Hill, 1994.
  2. W. Vargas, S. Chamba, A. D. L. Torre, y D. Echeverría, «Protocolo de pruebas y validación de reguladores de velocidad – Aplicación práctica en la central hidroeléctrica Delsitanisagua», Revista Técnica «energía», vol. 19, n.o 1, Art. n.o 1, jul. 2022, doi: 10.37116/revistaenergia.v19.n1.2022.507.
  3. S. Chamba, W. Vargas, D. Echeverría, y J. Riofrio, «Regulación Primaria de Frecuencia Mediante Sistemas de Almacenamiento de Energía con Baterías en el Sistema Eléctrico Ecuatoriano», Revista Técnica «energía», vol. 19, n.o 1, Art. n.o 1, jul. 2022, doi: 10.37116/revistaenergia.v19.n1.2022.506.
  4. U. Rudez y R. Mihalic, «Analysis of Underfrequency Load Shedding Using a Frequency Gradient», IEEE Transactions on Power Delivery, vol. 26, n.o 2, Art. n.o 2, abr. 2011, doi: 10.1109/TPWRD.2009.2036356.
  5. J. A. Laghari, H. Mokhlis, A. H. A. Bakar, y H. Mohamad, «Application of computational intelligence techniques for load shedding in power systems: A review», Energy Conversion and Management, vol. 75, pp. 130-140, nov. 2013, doi: 10.1016/j.enconman.2013.06.010.
  6. C. X. Lozada, W. A. Vargas, N. V. Granda, y M. S. Chamba, «Methodology for Identifying Representative Rates of Change of Frequency (ROCOFs) in an Electric Power System against N-1 Contingencies», en XXXI Conference on Electrical and Electronic Engineering, MDPI, dic. 2023, p. 8. doi: 10.3390/engproc2023047008.
  7. C. Lozada, W. Vargas, N. Granda, y M. Chamba, «Optimal Load Shedding Scheme Considering the Dynamic Frequency Response», Engineering Proceedings, vol. 77, n.o 1, Art. n.o 1, 2024, doi: 10.3390/engproc2024077025.
  8. J. M.- Carvajal y C. B.- Singaña, «Esquema de alivio de carga adaptativo en sistemas de potencia de alto componente no inercial basado en representaciones dinámicas / Esquema de alívio de carga adaptativo em sistemas de potência de componentes não inerciais elevados baseado em representações dinâmicas», BASR, vol. 6, n.o 2, pp. 657-675, abr. 2022, doi: 10.34115/basrv6n2-018.
  9. C. A. M. Cholo, «Propuesta de un esquema de alivio de carga para microrredes usando la norma IEC 61850 y la tasa de cambio de la frecuencia».
  10. M. Sun, G. Liu, M. Popov, V. Terzija, y S. Azizi, «Underfrequency Load Shedding Using Locally Estimated RoCoF of the Center of Inertia», IEEE Trans. Power Syst., vol. 36, n.o 5, pp. 4212-4222, sep. 2021, doi: 10.1109/TPWRS.2021.3061914.
  11. D. L. H. Aik, «A general-order system frequency response model incorporating load shedding: analytic modeling and applications», IEEE Transactions on Power Systems, vol. 21, n.o 2, Art. n.o 2, may 2006, doi: 10.1109/TPWRS.2006.873123.
  12. L. Wu, «Power System Frequency Measurement Based Data Analytics and Situational Awareness», Doctoral Dissertations, may 2018, [En línea]. Disponible en: https://trace.tennessee.edu/utk_graddiss/4897
  13. T. Athay, R. Podmore, y S. Virmani, «A Practical Method for the Direct Analysis of Transient Stability», IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, n.o 2, pp. 573-584, mar. 1979, doi: 10.1109/TPAS.1979.319407.
Sistema OJS 3.4.0.9 - Metabiblioteca |