Energy efficiency in Catholic University Azogues Campus, a technicaleconomical implementation approach based on solar energy

Main Article Content

Daniela Romo
https://orcid.org/0000-0003-0222-3892
Diego Morales
https://orcid.org/0000-0002-4382-5219

Abstract

Currently the high consumption of electrical energy is mostly through the use of non-renewable sources, this has caused negative effects on the environment. This article analyzes the energy consumption of an administrative block of the university campus of the Catholic University of Cuenca, Azogues Headquarters; energy efficiency proposals are presented to reduce energy consumption. From the load lifting, a monthly consumption of 35 890 KWh is recorded, which is considered high, it can be seen that the monthly invoice demand does not present significant changes for the reduction of energy consumption, as there are no polices that promote energy saving and efficient use. The maximum demand is estimated, the energy consumed for the different blocks of the institution, as well as sustainable, technical and economic sustainable energy saving measures that optimize energy consumption are evaluated. As an efficiency proposal, the change of technology in the existing luminaires was considered, as well as the use of photovoltaic solar energy, thus allowing to reduce CO2 emissions thus making the project economically viable through CDM project (Development Mechanisms Cleansed).

Downloads

Download data is not yet available.

Article Details

How to Cite
Romo, D. ., & Morales , D. . (2021). Energy efficiency in Catholic University Azogues Campus, a technicaleconomical implementation approach based on solar energy. Revista Técnica "energía", 17(2), PP. 44–54. https://doi.org/10.37116/revistaenergia.v17.n2.2021.420
Section
EFICIENCIA ENERGÉTICA

References

[1] H. Altomonte, M. Coviello, and W. F. Lutz, Energías renovables y eficiencia energética en América Latina y el Caribe: restricciones y perspectivas. CEPAL, 2003.
[2] A. C. Peña and J. M. G. Sánchez, Gestión de la eficiencia energética: cálculo del consumo, indicadores y mejora. AENOR, 2012.
[3] Meteonorm. "Meteonorm 7.3.4 (23.03.2020)." https://meteonorm.com/en/download (accessed.
[4] J. Rey Hernández, F. J. Rey Martinez, and E. Velasco Gomez, Eficiencia energética de los edificios. Sistema de gestión energética ISO 50001. Auditorías energéticas. Ediciones Paraninfo, SA, 2018.
[5] J. D. Pinzón, A. Corredor, F. Santamaría, J. A. Hernández, and C. L. Trujillo, "Implementación de indicadores energéticos en centros educativos. Caso de estudio: Edificio Alejandro Suárez Copete-Universidad Distrital Francisco José de Caldas," Revista EAN, no. 77, pp. 186-200, 2014.
[6] S. Chakraborty, P. K. Sadhu, and N. Pal, "Technical mapping of solar PV for ISM‐an approach toward green campus," Energy Science & Engineering, vol. 3, no. 3, pp. 196-206, 2015.
[7] E. Formación, Energía solar fotovoltaica. FC Editorial, 2007.
[8] M. A. Abella, "Sistemas fotovoltaicos," SAPT Publicaciones Técnicas, SL, 2005.
[9] CenitSolar. "Fotovoltaica aislada." http://www.cenitsolar.com/fotovoltaica_esquema.php (accessed.
[10] S. Salamanca-Ávila, "Propuesta de diseño de un sistema de energía solar fotovoltaica. Caso de aplicación en la ciudad de Bogotá," Revista científica, no. 30, pp. 263-277, 2017.
[11] M. A. Miranda Escobar, "Diseño de sistema de generación fotovoltaica para viviendas conectadas a la red de distribución, en el contexto de la Ley N 20.571," 2016.
[12] T.-H. Chou Huang, "Sistemas fotovoltaicos para electrificación rural: su potencial para modificar el mix eléctrico en la República Dominicana," 2019.
[13] Sunpower. "Sunpower performance series 1500 V P/17." https://cdn.enfsolar.com/Product/pdf/Crystalline/5c25b768969a8.pdf?_ga=2.233950105.682523182.1599536040-167863283.1598852334&_gac=1.52700060.1599537997.EAIaIQobChMInPW4_NbY6wIVCo-GCh10hA4jEAAYASAAEgJEh_D_BwE (accessed.
[14] GPTech. "GPTech, Inversores." https://www.greenpower.es/es/home/index.html (accessed.
[15] Tensite. "Tensite AGM DC 12-300." https://autosolar.es/pdf/datasheet-tensite-batteries-AGM-12-300.pdf (accessed.
[16] C. S. Antonio, B. D. David, C. F. Eduardo, and C. G. M. Alonso, Generación distribuida, autoconsumo y redes inteligentes. Editorial UNED, 2015.
[17] S.J.S Miño, "ENERGIAS RENOVABLES:CONCEPTOS Y APLICAICONES," vol. WWF- Fundacion Natura, vol. 2, pp. nº1, p.41, 2003.
[18] M. A. Abella, "Dimensionado de sistemas fotovoltaicos," Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas”. Tesis para optar al titulo de maestrıa, Departamento de Energıas Renovables. Escuela de organización industrial, 2014.
[19] J. Oscullo and L. Haro, "Factor Anual de Emisión de CO2 Producido por el Parque Generador del Sistema Nacional Interconectado del Ecuador, mediante la Aplicación de la Metodología de la Convención Marco sobre el Cambio Climático UNFCCC, para el periodo 2009-2014," Revista Politécnica, vol. 37, no. 1, pp. 61-61, 2016.
[20] F. Carbono, "Plataforma sobre financiamiento climático para Latinoamérica y el Caribe," línea]. Available: http://finanzascarbono. org/mercados/mecanismo-desarrollolimpio/preguntas-frecuentes-sobre-mdl/.[Último acceso: 10 Noviembre 2016], 2017.
[21] SENDEC02. Sistema Europeo de Negociacion de C02 [Online] Available: https://www.sendeco2.com/es/

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.