Optimal Coordination of Inverse Time Overcurrent Relays using COA and GSA Heuristic Algorithms
Main Article Content
Abstract
The purpose of this article is to achieve optimal coordination for timed overcurrent relays modeled in a test system. The traditional adjustment that is usually used in the field is taken as the base criterion to determine the improvements achieved with the implemented optimization methods. Optimal parameters are determined for two timed overcurrent relays modeled on the IEEE 13-node test system using PowerFactory software. The optimization algorithms are coded in Python. PowerFactory links with Python to generate interoperability between the algorithm and the electrical system. Satisfactory results are achieved from the COA and GSA algorithms with a reduction of more than 50% in relay operating times.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
References
S. Samadinasab, F. Namdari, y N. Shojaei, “A New Method for Optimal Coordination of Overcurrent Relays in Power System Networks Earthing System Design,” International Electrical Engineering Journal (IEEJ), vol. 6, no. 11, pp. 2066–2073, 2015.
R. Rajabioun, “Cuckoo Optimization Algorithm,” Applied Soft Computing Journal, vol. 11, no. 8, Dic. 2011, pp. 5508–5518, doi: 10.1016/j.asoc.2011.05.008.
S. A. Jalaee, A. Ghaseminejad, M. Lashkary, y M. Rezaee Jafari, “Forecasting Iran’s energy demand using cuckoo optimization algorithm,” Mathematical Problems in Engineering, vol. 2019, 2019, doi: 10.1155/2019/2041756
P. Makeen, H. A. Ghali, y S. Memon, “Experimental and Theoretical Analysis of the Fast Charging Polymer Lithium-Ion Battery Based on Cuckoo Optimization Algorithm (COA),” IEEE Access, vol. 8, pp. 140486–140496, 2020. doi: 10.1109/ACCESS.2020.3012913.
D. Dasgupta y O. Nasraoui, “A Review of Gravitational Search Algorithm,” Universiti Teknologi MARA, 2013.
E. Rashedi, H. Nezamabadi-pour y S. Saryazdi, “GSA: A Gravitational Search Algorithm,” IEEE, vol. 179, no. 13, 2009.
E. Rashedi, “Gravitational Search Algorithm (GSA),” MATLAB Central File Exchange, 2024. [En línea]. Available: https://www.mathworks.com/matlabcentral/fileexchange/27756-gravitational-search-algorithm-gsa. [Último acceso: 12 Abril 2024]
A. Srivastava, J. Tripathi, R. Mohanty y N. Kishor, “A simulation based comparative study of optimization techniques for relay coordination with distributed generation,” Proc. IEEE Student Conf. Eng. Syst., 2014.
W. H. Kersting, “Radial Distribution Test Feeders”, en 2001 IEEE Power Engineering Society Winter Meeting, Columbia, jun. 2001, pp. 908–912. doi: 10.1109/PESW.2001.916993.
DIgSILENT Powerfactory. IEEE 13 Node Test Feeder, Alemania. [En línea]. Disponible en: www.digsilent.de.
J. C. Guamán, “Estudio de coordinación de protecciones del sistema de subtransmisión de CNEL EP Sucumbíos ante un nuevo punto de conexión al Sistema Nacional Interconectado”, Tesis de pregrado, EPN, Quito, Ec. 2017. [En línea]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/17463.
A. Mahari y H. Seyedi, “An analytic approach for optimal coordination of overcurrent relays”, IET Generation, Transmission and Distribution, vol. 7, no. 7, pp. 674 –680, 2013. doi: 10.1049/iet-gtd.2012.0721.
D. Jain, “Data Normalization in Data Mining”, geeksforgeeks. [En línea]. Disponible en: https://www.geeksforgeeks.org/data-normalization-in-data-mining/.