Regeneration of Deteriorated Internal Combustion Engine Components used in Thermal Power Plants

Main Article Content

William Quitiaquez
https://orcid.org/0000-0001-9430-2082
Hugo Meneses
https://orcid.org/0009-0004-8420-5982
Patricio Quitiaquez
Isaac Simbaña
https://orcid.org/0000-0002-3324-3071

Abstract

The generation of electric power through internal combustion engines plays an important role in the world economy. Exhaust cases and valves are critical engine components and are subjected to high pressures and temperatures. The additive remanufacturing technology of mechanical components that have reached the end of their useful life due to wear, through the L-DED laser directed energy deposition method, proves to be an effective method to obtain spare parts with similar or even superior characteristics to a new part, extending the product life cycle in the circular economy. The process consists of obtaining 3D models through reverse engineering, additive remanufacturing by L-DED and final machining. It was determined through the study that this methodology can be successfully applied to the exhaust boxes and valves of internal combustion engines for electric generation. The results obtained have shown that this remanufacturing method is an effective solution for the recovery of exhaust boxes and valves that have completed their useful life and can be applied to other engine elements, reducing the cost of the spare part compared to a new one and bringing with it important environmental benefits. In reference to the remanufacturing time, it has been determined that the application of the L-DED process in the exhaust boxes and valves is 3943 and 3677 s respectively. In addition to this time, the time used in the initial preparation and final machining must be added; however, the time is substantially less than the manufacturing of a new spare part, which brings with it an increase in the availability of these spare parts to perform scheduled maintenance in the engines for power generation, contributing to improve the efficiency of the national electric system.

Downloads

Download data is not yet available.

Article Details

How to Cite
Quitiaquez, W., Meneses, H., Quitiaquez, P., & Simbaña, I. (2025). Regeneration of Deteriorated Internal Combustion Engine Components used in Thermal Power Plants. Revista Técnica "energía", 21(2), PP. 48–59. https://doi.org/10.37116/revistaenergia.v21.n2.2025.690
Section
EFICIENCIA ENERGÉTICA

References

D. Bocchetti, M. Giorgio, M. Guida, and G. Pulcini, “A competing risk model for the reliability of cylinder liners in marine Diesel engines,” Reliab. Eng. Syst. Saf., vol. 94, no. 8, pp. 1299–1307, 2009, doi: https://doi.org/10.1016/j.ress.2009.01.010.

S. Vasilevish, A. Warouma, and S. Vasilevish, “Restoration of bronze bushes by the method of surface plastic deformation,” Int. J. Eng. Technol., vol. 5, p. 29, 2016, doi: 10.14419/ijet.v5i1.5651.

A. Permyakov, Y. Nemyrovskyi, E. Posviatenko, and I. Shepelenko, “Methodology of technological design in the restoration of parts,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1277, no. 1, p. 12013, Mar. 2023, doi: 10.1088/1757-899X/1277/1/012013.

Rahito, D. A. Wahab, and A. H. Azman, “Additive Manufacturing for Repair and Restoration in Remanufacturing: An Overview from Object Design and Systems Perspectives,” Processes, vol. 7, no. 11, 2019, doi: 10.3390/pr7110802.

W. Quitiaquez et al., “Análisis del rendimiento termodinámico de una bomba de calor asistida por energía solar utilizando un condensador con recirculación,” Rev. Técnica “Energía,” vol. 16, no. 2, pp. 111–125, 2020, doi: 10.37116/revistaenergia.v16.n2.2020.358.

Y. Lahrour and D. Brissaud, “A Technical Assessment of Product/Component Re-manufacturability for Additive Remanufacturing,” Procedia CIRP, vol. 69, pp. 142–147, 2018, doi: https://doi.org/10.1016/j.procir.2017.11.105.

S. Yin et al., “Cold spray additive manufacturing and repair: Fundamentals and applications,” Addit. Manuf., vol. 21, pp. 628–650, 2018, doi: https://doi.org/10.1016/j.addma.2018.04.017.

H. Assadi, H. Kreye, F. Gärtner, and T. Klassen, “Cold spraying – A materials perspective,” Acta Mater., vol. 116, pp. 382–407, 2016, doi: https://doi.org/10.1016/j.actamat.2016.06.034.

J. C. Najmon, S. Raeisi, and A. Tovar, “2 - Review of additive manufacturing technologies and applications in the aerospace industry,” in Additive Manufacturing for the Aerospace Industry, F. Froes and R. Boyer, Eds., Elsevier, 2019, pp. 7–31. doi: https://doi.org/10.1016/B978-0-12-814062-8.00002-9.

S. Peng et al., “An integrated decision model of restoring technologies selection for engine remanufacturing practice,” J. Clean. Prod., vol. 206, pp. 598–610, 2019, doi: https://doi.org/10.1016/j.jclepro.2018.09.176.

R. Huang, M. Sone, W. Ma, and H. Fukanuma, “The effects of heat treatment on the mechanical properties of cold-sprayed coatings,” Surf. Coatings Technol., vol. 261, pp. 278–288, 2015, doi: https://doi.org/10.1016/j.surfcoat.2014.11.017.

Q. Xiang, H. Zhang, Z. Jiang, S. Zhu, and W. Yan, “A decision-making method for active remanufacturing time based on environmental and economic indicators,” Int. J. Online Eng., vol. 12, no. 12, pp. 32–37, 2016, doi: 10.3991/ijoe.v12i12.6455.

G. Barragan, D. A. Rojas Perilla, J. Grass Nuñez, F. Mariani, and R. Coelho, “Characterization and Optimization of Process Parameters for Directed Energy Deposition Powder-Fed Laser System,” J. Mater. Eng. Perform., vol. 30, no. 7, pp. 5297–5306, 2021, doi: 10.1007/s11665-021-05762-9.

Y. Zhao, J. Sun, Z. Jia, W. Cheng, and J. Wang, “Research on Laser Additive and Milling Subtractive Composite Remanufacturing Process of Compressor Blade,” J. Manuf. Mater. Process., vol. 2, no. 4, 2018, doi: 10.3390/jmmp2040073.

X. Zhang, W. Li, K. M. Adkison, and F. Liou, “Damage reconstruction from tri-dexel data for laser-aided repairing of metallic components,” Int. J. Adv. Manuf. Technol., vol. 96, no. 9, pp. 3377–3390, 2018, doi: 10.1007/s00170-018-1830-3.

A. Shrivastava, A. K. S., S. Rao, N. B.K., S. Barad, and S. T.N., “Remanufacturing of nickel-based aero-engine components using metal additive manufacturing technology,” Mater. Today Proc., vol. 45, pp. 4893–4897, 2021, doi: https://doi.org/10.1016/j.matpr.2021.01.355.

A. Carmona, F. Delfin, A. Maskavizan, and S. Brühl, “Análisis comparativo de recubrimientos duros de DLC y TiSiCN frente al desgaste y a la corrosión,” Matéria (Rio Janeiro), vol. 28, 2023, doi: 10.1590/1517-7076-rmat-2022-0312.

S. Zhu, W. Du, X. Wang, G. Han, Z. Ren, and K. Zhou, “Advanced Additive Remanufacturing Technology,” Chinese J. Mech. Eng. Addit. Manuf. Front., vol. 2, no. 1, p. 100066, 2023, doi: https://doi.org/10.1016/j.cjmeam.2023.100066.

R. Kian, T. Bektaş, and D. Ouelhadj, “Optimal spare parts management for vessel maintenance scheduling,” Ann. Oper. Res., vol. 272, no. 1, pp. 323–353, 2019, doi: 10.1007/s10479-018-2907-y.

J. Zhou, T. Li, and D. Wang, “A Novel Approach of Studying the Fluid–Structure–Thermal Interaction of the Piston–Cylinder Interface of Axial Piston Pumps,” Appl. Sci., vol. 11, no. 19, 2021, doi: 10.3390/app11198843.

K. P. Dahal and N. Chakpitak, “Generator maintenance scheduling in power systems using metaheuristic-based hybrid approaches,” Electr. Power Syst. Res., vol. 77, no. 7, pp. 771–779, 2007, doi: https://doi.org/10.1016/j.epsr.2006.06.012.

I. Simbaña, W. Quitiaquez, J. Estupiñán, F. Toapanta-Ramos, and L. Ramírez, “Evaluación del rendimiento de una bomba de calor de expansión directa asistida por energía solar mediante simulación numérica del proceso de estrangulamiento en el dispositivo de expansión,” Rev. Técnica “energía,” vol. 19, no. 1, pp. 110–119, 2022, doi: 10.37116/revistaenergia.v19.n1.2022.524.

A. Froger, M. Gendreau, J. E. Mendoza, É. Pinson, and L.-M. Rousseau, “Maintenance scheduling in the electricity industry: A literature review,” Eur. J. Oper. Res., vol. 251, no. 3, pp. 695–706, 2016, doi: https://doi.org/10.1016/j.ejor.2015.08.045.

D. Svetlizky et al., “Directed energy deposition (DED) additive manufacturing: Physical characteristics, defects, challenges and applications,” Mater. Today, vol. 49, pp. 271–295, 2021, doi: https://doi.org/10.1016/j.mattod.2021.03.020.

G. Piscopo and L. Iuliano, “Current research and industrial application of laser powder directed energy deposition,” Int. J. Adv. Manuf. Technol., vol. 119, no. 11, pp. 6893–6917, 2022, doi: 10.1007/s00170-021-08596-w.

A. J. Pinkerton, “16 - Laser direct metal deposition: theory and applications in manufacturing and maintenance,” in Advances in Laser Materials Processing, J. Lawrence, J. Pou, D. K. Y. Low, and E. Toyserkani, Eds., in Woodhead Publishing Series in Welding and Other Joining Technologies. , Woodhead Publishing, 2010, pp. 461–491. doi: https://doi.org/10.1533/9781845699819.6.461.

R. Liu, Z. Wang, T. Sparks, F. Liou, and J. Newkirk, “13 - Aerospace applications of laser additive manufacturing,” in Laser Additive Manufacturing, M. Brandt, Ed., in Woodhead Publishing Series in Electronic and Optical Materials. , Woodhead Publishing, 2017, pp. 351–371. doi: https://doi.org/10.1016/B978-0-08-100433-3.00013-0.

H. Wang et al., “Review on adaptive control of laser-directed energy deposition,” Opt. Eng., vol. 59, no. 07, p. 1, 2020, doi: 10.1117/1.oe.59.7.070901.

C. Barr, R. A. Rahman Rashid, S. Palanisamy, J. Watts, and M. Brandt, “Examination of steel compatibility with additive manufacturing and repair via laser directed energy deposition,” J. Laser Appl., vol. 35, no. 2, 2023, doi: 10.2351/7.0000952.

D. K. Kim, D. Y. Kim, S. H. Ryu, and D. J. Kim, “Application of nimonic 80A to the hot forging of an exhaust valve head,” J. Mater. Process. Technol., vol. 113, no. 1, pp. 148–152, 2001, doi: https://doi.org/10.1016/S0924-0136(01)00700-2.

Z. Lestan, M. Milfelner, J. Balic, M. Brezocnik, and I. Karabegovic, “Laser deposition of Metco 15E, Colmony 88 and VIM CRU 20 powders on cast iron and low carbon steel,” Int. J. Adv. Manuf. Technol., vol. 66, no. 9, pp. 2023–2028, 2013, doi: 10.1007/s00170-012-4478-4.

V. Shankar, K. Bhanu Sankara Rao, and S. L. Mannan, “Microstructure and mechanical properties of Inconel 625 superalloy,” J. Nucl. Mater., vol. 288, no. 2, pp. 222–232, 2001, doi: https://doi.org/10.1016/S0022-3115(00)00723-6.

S. Pratheesh Kumar, S. Elangovan, R. Mohanraj, and J. R. Ramakrishna, “A review on properties of Inconel 625 and Inconel 718 fabricated using direct energy deposition,” Mater. Today Proc., vol. 46, pp. 7892–7906, 2021, doi: https://doi.org/10.1016/j.matpr.2021.02.566.

A. Strondl, R. Fischer, G. Frommeyer, and A. Schneider, “Investigations of MX and γ′/γ″ precipitates in the nickel-based superalloy 718 produced by electron beam melting,” Mater. Sci. Eng. A, vol. 480, pp. 138–147, 2008, doi: 10.1016/j.msea.2007.07.012.

Y. L. Hu, Y. L. Li, S. Y. Zhang, X. Lin, Z. H. Wang, and W. D. Huang, “Effect of solution temperature on static recrystallization and ductility of Inconel 625 superalloy fabricated by directed energy deposition,” Mater. Sci. Eng. A, vol. 772, p. 138711, 2020, doi: https://doi.org/10.1016/j.msea.2019.138711.

Z. Li, J. Chen, S. Sui, C. Zhong, X. Lu, and X. Lin, “The microstructure evolution and tensile properties of Inconel 718 fabricated by high-deposition-rate laser directed energy deposition,” Addit. Manuf., vol. 31, p. 100941, 2020, doi: https://doi.org/10.1016/j.addma.2019.100941.

H. González-Barrio, A. Calleja-Ochoa, L. Norberto López de Lacalle, and A. Lamikiz, “Hybrid manufacturing of complex components: Full methodology including laser metal deposition (LMD) module development, cladding geometry estimation and case study validation,” Mech. Syst. Signal Process., vol. 179, p. 109337, 2022, doi: https://doi.org/10.1016/j.ymssp.2022.109337.

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.