Estudio Numérico Mediante CFD del Proceso de Enfriamiento con Intercambiadores de Calor en Sistemas Computacionales

Contenido principal del artículo

Fernando Toapanta
https://orcid.org/0000-0002-0838-4702
Jairo Cortéz
William Quitiaquez
https://orcid.org/0000-0001-9430-2082
Wilson Orellana

Resumen

El presente artículo científico trata el estudio y simulación de un radiador que se basa en un intercambiador de calor tubular de flujo cruzado, el cual tiene un propósito de refrigerar el procesador, tarjeta gráfica de una CPU o diversos hardware en los sistemas de computación. Se realizan diversas simulaciones en el programa ANSYS teniendo varias temperaturas de ingreso que van en rangos desde 75 °C hasta 90 °C y con flujos másicos diferentes.  Los resultados muestran que, al aumentar la temperatura de ingreso del fluido a refrigerar, la salida de este fluido tambien aumenta. Sin embargo, cuando se aumenta el flujo másico existe una merma en el rechazo de calor en los dispositivos computacionales.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Toapanta, F., Cortéz, J., Quitiaquez, W., & Orellana, W. (2021). Estudio Numérico Mediante CFD del Proceso de Enfriamiento con Intercambiadores de Calor en Sistemas Computacionales . Revista Técnica "energía", 17(2), PP. 55–64. https://doi.org/10.37116/revistaenergia.v17.n2.2021.422
Sección
EFICIENCIA ENERGÉTICA

Citas

1] A. Addagatla, J. Fernandes, D. Mani, D. Agonafer, and V. Mulay, “Effect of warm water cooling for an isolated hybrid liquid cooled server,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., vol. 2015-April, pp. 203–207, 2015, doi: 10.1109/SEMI-THERM.2015.7100161.
[2] K. Nemati, T. Gao, B. T. Murray, and B. Sammakia, “Experimental characterization of the rear door fans and heat exchanger of a fully-enclosed, hybrid-cooled server cabinet,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., vol. 2015-April, pp. 155–162, 2015, doi: 10.1109/SEMI-THERM.2015.7100154.
[3] M. A. Kadhim, Y. T. Al-Anii, N. Kapur, J. L. Summers, and H. M. Thompson, “Performance of a mixed mode air handling unit for direct liquid-cooled servers,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., pp. 172–178, 2017, doi: 10.1109/SEMI-THERM.2017.7896926.
[4] S. J. Ovaska, R. E. Dragseth, and S. A. Hanssen, “Impact of retrofitted CPU water cooling on supercomputer performance and power consumption,” Conf. Proc. - IEEE SOUTHEASTCON, vol. 2016-July, pp. 1–2, 2016, doi: 10.1109/SECON.2016.7506669.
[5] N. Raja Kuppusamy and L. Poh Seng, “Study on thermal and hydrodynamic performance of a triple fluid heat exchanger with different passes and rows,” Energy Procedia, vol. 158, pp. 5901–5906, 2019, doi: 10.1016/j.egypro.2019.01.534.
[6] D. P. Kulkarni and R. Steinbrecher, “Compact liquid enhanced air cooling thermal solution for high power processors in existing air-cooled platforms,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., vol. Part F1214, pp. 81–85, 2016, doi: 10.1109/SEMI-THERM.2016.7458449.
[7] G. Tang, Y. Han, and X. Zhang, Compact heat exchanger design and energy efficiency optimization for data centre cooling application, vol. 2018-Febru. 2018.
[8] Y. Fan, C. Winkel, D. Kulkarni, and W. Tian, “Analytical Design Methodology for Liquid Based Cooling Solution for High TDP CPUs,” Proc. 17th Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. ITherm 2018, pp. 582–586, 2018, doi: 10.1109/ITHERM.2018.8419562.
[9] T. A. Shedd and R. A. Morell, “Cooling 11.6 TFlops (1500 watts) in an office environment,” Annu. IEEE Semicond. Therm. Meas. Manag. Symp., pp. 122–124, 2017, doi: 10.1109/SEMI-THERM.2017.7896918.
[10] G. R. Wagner et al., “Test results from the comparison of three liquid cooling methods for high-power processors,” Proc. 15th Intersoc. Conf. Therm. Thermomechanical Phenom. Electron. Syst. ITherm 2016, pp. 619–624, 2016, doi: 10.1109/ITHERM.2016.7517605.
[11] A. C. Kheirabadi and D. Groulx, “Cooling of server electronics: A design review of existing technology,” Appl. Therm. Eng., vol. 105, no. 2016, pp. 622–638, 2016, doi: 10.1016/j.applthermaleng.2016.03.056.
[12] S. O. Tan and H. Demirel, “Performance and cooling efficiency of thermoelectric modules on server central processing unit and Northbridge,” Comput. Electr. Eng., vol. 46, pp. 46–55, 2015, doi: 10.1016/j.compeleceng.2015.07.012.
[13] A. C. Kheirabadi and D. Groulx, “Experimental evaluation of a thermal contact liquid cooling system for server electronics,” Appl. Therm. Eng., vol. 129, pp. 1010–1025, 2018, doi: 10.1016/j.applthermaleng.2017.10.098.
[14] W. Wang, L. Chen, Y. Kong, L. Yang, Y. Niu, and X. Du, “Cooling performance evaluation for double-layer configuration of air-cooled heat exchanger,” Int. J. Heat Mass Transf., vol. 151, p. 119396, 2020, doi: 10.1016/j.ijheatmasstransfer.2020.119396.
[15] S. Maalej, A. Zayoud, I. Abdelaziz, I. Saad, and M. C. Zaghdoudi, “Thermal performance of finned heat pipe system for Central Processing Unit cooling,” Energy Convers. Manag., vol. 218, no. February, p. 112977, 2020, doi: 10.1016/j.enconman.2020.112977.
[16] Y. Sun, T. Wang, L. Yang, L. Hu, and X. Zeng, “Research of an integrated cooling system consisted of compression refrigeration and pump-driven heat pipe for data centers,” Energy Build., vol. 187, pp. 16–23, 2019, doi: 10.1016/j.enbuild.2019.01.050.
[17] K. Liang, Z. Li, M. Chen, and H. Jiang, “Comparisons between heat pipe, thermoelectric system, and vapour compression refrigeration system for electronics cooling,” Appl. Therm. Eng., vol. 146, no. September 2018, pp. 260–267, 2019, doi: 10.1016/j.applthermaleng.2018.09.120.
[18] L. Bilurbina Alter, F. Liesa Mestres, and J. I. Iribarren Laco, Corrosión y protección, vol. 53, no. 9. 2003.

Artículos más leídos del mismo autor/a

1 2 > >> 

Artículos similares

También puede {advancedSearchLink} para este artículo.