Evaluación de Resiliencia en el Sistema Eléctrico Ecuatoriano frente a Eventos Sísmicos
Resilience Assessment in Ecuadorian Power Network Against Seismic Events
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- L. Chimborazo, R. Barba, Propuesta para la Estructura Organizativa y el Modelo de Gestión de los Centros de Operaciones de las Empresas Distribuidoras de Energía Eléctrica Propuesta Metodológica para su Implantación , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- A. Álvarez, Aplicación de las Normas Internacionales de Información Financiera -NIIF’s en la Corporación CENACE , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- P. Alvear , J. Oscullo, Mejoramiento de la Gestión Administrativa y Financiera de las Empresas Públicas de la Función Ejecutiva del Ecuador: Caso Empresa Coordinadora de Empresas Públicas , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- J. Ayala, El Pennisetum Clandestinum como Fuente Energética para Aplicaciones Térmicas en el Ecuador , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- F.A. Quizhpi, F. Bresciani, “Motor de Inducción de una Sola Espira” , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- J. Herrera , Sistema Híbrido Solar – Eólico para el Abastecimiento Eléctrico del Centro Nacional de Control de Energía , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- J. Hidalgo, Implementación de Equipos de Silicona de Gel en Redes Subterráneas , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- J. Crespo , M. Cedeño, Sistema de Toma, Análisis y Gestión de Datos Industriales de la Central Quevedo II, CELEC EP – UNIDAD DE NEGOCIOS TERMOPICHINCHA , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
- P. Verdugo, J. Játiva, Metodología de Sintonización de Parámetros del Estabilizador del Sistema de Potencia -PSS , Revista Técnica "energía": Vol. 10 Núm. 1 (2014): Revista Técnica "energía", Edición No. 10
- J. Cepeda, J. Rueda, Identificación de Equivalentes Dinámicos Mediante Optimización de Mapeo Media-Varianza en Ambiente DIgSILENT Power Factory , Revista Técnica "energía": Vol. 9 Núm. 1 (2013): Revista Técnica "energía", Edición No. 9
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Miguel Saltos, Andrés Velásquez, Mauricio Aguirre, Alex Villamarín, Diego Ortíz, Ricardo Haro, Planificación Óptima de Recursos Energéticos Distribuidos para Mejorar la Resiliencia de Sistemas de Distribución de Energía Eléctrica frente a Desastres Naturales: Caso en Lahares Volcánicos , Revista Técnica "energía": Vol. 18 Núm. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
El desencadenamiento de una serie de eventos naturales catastróficos (tales como terremotos, tsunamis, incendios forestales, tornados, etc.), han provocado que los sistemas eléctricos de potencia sean más vulnerables a sufrir daños en sus componentes, afectando así en gran medida su capacidad para suministrar energía eléctrica. En este contexto, el desafío actual de los sistemas eléctricos se centra en simular y cuantificar el impacto de los diversos eventos catastróficos considerando su aleatoriedad de ocurrencia y alta complejidad. El presente trabajo propone una metodología para evaluar el impacto sísmico en un sistema eléctrico real, usando simulaciones de Monte Carlo para determinar la vulnerabilidad de los componentes del sistema, incorporando un modelo DC-OPF con el objetivo de obtener los flujos óptimos de potencia activa y cuantificar la energía no suministrada (ENS) del sistema. La metodología propuesta es aplicada en el Sistema Nacional Interconectado (SNI) del Ecuador para obtener indicadores y métricas que permiten evaluar la resiliencia del sistema. Los resultados de la simulación muestran la vulnerabilidad del SNI y cuantifican la degradación de la resiliencia en términos de operación e infraestructura dependiendo de la magnitud y ubicación de los eventos sísmicos.
Visitas del artículo 1784 | Visitas PDF 923
Descargas
[1] R. J. Campbell, “Weather-related power outages and electric system resiliency,”Congr. Res. Service, Library Congr., Washington, DC, USA, Rep. R42696, 2012.
[2] "Plan Maestro de Electricidad", Ministerio de Energía y Recursos Naturales no Renovables, 2020. [Online]. Available: https://www.recursosyenergia.gob.ec/plan-maestro-de-electricidad/ . [Accessed: 05- Nov- 2020].
[3] R. Billinton and R. Allan, “Reliability Evaluation of Power Systems,” New York: Springer-Verlag, 1996..
[4] N. Bhusal, M. Gautam, M. Abdelmalak and M. Benidris, "Modeling of Natural Disasters and Extreme Events for Power System Resilience Enhancement and Evaluation Methods," 2020 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Liege, Belgium, 2020, pp. 1-6.
[5] N. Bhusal, M. Abdelmalak, M. Kamruzzaman and M. Benidris, "Power System Resilience: Current Practices, Challenges, and Future Directions," in IEEE Access, vol. 8, pp. 18064-18086, 2020.
[6] M. Panteli and P. Mancarella, “Influence of extreme weather and climate change on the resilience of power systems: Impacts and possible mitigation strategies,” Electric Power Systems Research, vol. 127, pp. 259–270, 2015.
[7] Z. Bie, Y. Lin, G. Li and F. Li, "Battling the Extreme: A Study on the Power System Resilience," in Proceedings of the IEEE, vol. 105, no. 7, pp. 1253-1266, July 2017.
[8] J.A. Pires, A.H.-S. Ang, R. Villaverde, “Seismic reliability of electrical power transmission systems,” Nuclear Engineering and Design, vol. 160, Pages 427-439, 1996.
[9] I. Vanzi, R. Giannini, and P. E. Pinto, “Seismic reliability of electrical power transmission systems,” Reliability Optimization Structure System, vol. 160, no. 3, pp. 427–439, 1995.
[10] S. Espinoza et al., "Seismic resilience assessment and adaptation of the Northern Chilean power system," 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, 2017, pp. 1-5.
[11] A. Poulos, S. Espinoza, J. C. de la Llera, and H. Rudnick, “Seismic Risk Assessment of Spatially Distributed Electric Power Systems,” 6th World Conference Earthquake, 16WCEE 2017, no. May, p. 11, 2017.
[12] M. Nazemi and P. Dehghanian, "Seismic-Resilient Bulk Power Grids: Hazard Characterization, Modeling, and Mitigation," in IEEE Transactions on Engineering Management, vol. 67, no. 3, pp. 614-630, Aug. 2020.
[13] A. Villamarín-Jácome, D. Ortiz-Villalba, “Evaluación del Impacto Sísmico en Sistemas de Transmisión de Energía Eléctrica”. Memorias XXIX Jornadas en Ingeniería Eléctrica y Electrónica, vol.29, Nov. 2019.
[14] M. Panteli, P. Mancarella, D. N. Trakas, E. Kyriakides and N. D. Hatziargyriou, "Metrics and Quantification of Operational and Infrastructure Resilience in Power Systems," in IEEE Transactions on Power Systems, vol. 32, no. 6, pp. 4732-4742, Nov. 2017.
[15] "Ley Orgánica del Servicio Público de Energía Eléctrica", Empresa Eléctrica Quito, 2015. [Online]. Available: http://www.eeq.com.ec:8080/documents/10180/18910855/LEY+ORG%C3%81NICA+DEL+SERVICIO+P%C3%9ABLICO+DE+ENERG%C3%8DA+EL%C3%89CTRICA/78e7b717-f30a-49fe-aabc-f28ceb87eef4. [Accessed: 05- Nov- 2020].
[16] "Informe Anual 2019", Cenace, 2020. [Online]. Available: http://www.cenace.org.ec/index.php?option=com_phocadownload&view=category&id=6:phocatinfanuales&Itemid=50 . [Accessed: 05- Nov- 2020].
[17] "Estadística del Sector Eléctrico", ARCONEL, 2020. [Online]. Available: https://www.regulacionelectrica.gob.ec/estadistica-del-sector-electrico/ . [Accessed: 05-Nov-2020].
[18] C. B. Crouse, “Ground Motion Attenuation Equations for Earthquakes on the Cascadian Subduction Zone,” Earthquake Spectra, May 1991, Vol. 7, No. 2, pp. 201-236.
[19] J. C. Araneda, H. Rudnick, S. Mocarquer and P. Miquel, "Lessons from the 2010 Chilean earthquake and its impact on electricity supply," 2010 International Conference on Power System Technology, Hangzhou, 2010, pp. 1-7.
[20] Federal Emergency Management Agency, “Multi-hazard Loss Estimation Methodology - HAZUS.”, Washington DC, 2015.
[21] GE Energy. Western Wind and Solar Integration Study. NREL. [Online]. Available: http://www.nrel.gov/docs/fy10osti/47434.pdf [Accessed: 3-Nov-2020].
[22] L. Bahiense, G. C. Oliveira, M. Pereira, and S. Granville, ‘A Mixed Integer Disjunctive Model for Transmission Network Expansion’, IEEE TRANSACTIONS ON POWER SYSTEMS, vol. 16, no. 3, p. 6, 2001.
[23] M. Mahzarnia, M. P. Moghaddam, P. T. Baboli and P. Siano, "A Review of the Measures to Enhance Power Systems Resilience," in IEEE Systems Journal, vol. 14, no. 3, pp. 4059-4070, Sept. 2020.
[24] Instituto Geofísico de la Escuela Politécnica Nacional (EPN). 2020. [Online]. Available: https://www.igepn.edu.ec/ [Accessed: 7-Nov-2020].







