Data Mining and Short-Term Projection of Power Demand in the Ecuadorian Electric System

Main Article Content

Angel Gallo
Fabián Pérez
https://orcid.org/0000-0001-8882-1425
Diego Salinas

Abstract

This article presents a computational tool developed in the Python programming language for data mining and short-term projection of the electrical power demand of the National Interconnected System (SNI), using the predictive approach of the Random Forest machine learning algorithm.


The implementation of the Hyperopt function to define the main hyperparameters of the Random Forest algorithm together with the application of feature engineering allows to fit a suitable machine learning model for the data series. This algorithm is implemented in tasks to mitigate missing values and outliers to structure complete databases free of deviations.


The procedure for data mining and demand projection shows the reliability and versatility of using the computational tool, obtaining relevant results, such as the reduction of anomalies in the data series to improve the precision in the projected electrical demand curves.

Downloads

Download data is not yet available.

Article Details

How to Cite
Gallo , A., Pérez, F., & Salinas, D. (2021). Data Mining and Short-Term Projection of Power Demand in the Ecuadorian Electric System. Revista Técnica "energía", 18(1), PP. 72–85. https://doi.org/10.37116/revistaenergia.v18.n1.2021.461
Section
TECNOLÓGICOS E INNOVACIÓN

References

[1] R. Medina and E. Montoya, “Estimación estadística de valores faltantes en series históricas de lluvia,” Universidad Tecnológica de Pereira, Pereira, 2008.

[2] S. Jurado, À. Nebot, F. Mugica, and N. Avellana, “Hybrid methodologies for electricity load forecasting: Entropy-Based Feature Selection with Machine Learning and Soft Computing Techniques,” ENERGY, vol. 86, pp. 276–291, Jun. 2015.

[3] K. Berk, Modeling and Forecasting Electricity Demand A Risk Management Perspective. Germany: Springer, 2015.

[4] V. Hinojosa, “Pronóstico de Demanda de Corto Plazo en Sistemas de Suministro de Energía Eléctrica utilizando Inteligencia Artificial,” Universidad Nacional de San Juan, Argentina, 2007.

[5] M. Jacob, C. Neves, and D. Vukadinović Greetham, “Short Term Load Forecasting,” in Forecasting and Assessing Risk of Individual Electricity Peaks. Mathematics of Planet Earth, Springer, 2019, pp. 15–37.

[6] Y. Liu, Python Machine Learning by Example, 2nd ed. Birmingham: Packt, 2017.

[7] L. Igual and S. Seguí, Introduction to Data Science: A Python Apporach to Concepts, Techniques and Applications. Switzerland: Springer, 2017.

[8] L. BREIMAN, “Random Forests,” Machine Learning, vol. 45, pp. 5–32, 2001.

[9] Medium, “A Trip to Random Forest.” Mar. 2018, Accessed: Jun. 28, 2020. [Online]. Available: https://medium.com/greyatom/a-trip-to-random-forest-5c30d8250d6a.

[10] Scikit Learn, “scikit-learn Machine Learninh in Python.” Jun. 28, 2020, Accessed: Jun. 28, 2020. [Online]. Available: https://scikit-learn.org/stable/index.html.

[11] M. Swamynathan, Mastering Machine Learning with Python in Six Steps: A practical Implementation Guide to Predictive Data Analytics Using Python. Bangalore: Apress, 2017.

[12] K. Brent, J. Bergstra, and C. Eliasmith, “Hyperopt-Sklearn,” in Automated Machine Learning: Methods, Systems, Challenges, Waterloo: Springer, 2019.

[13] A. O. Gallo, “Análisis predictivo para minería de datos y proyección de demanda a corto plazo de la demanda de potencia en el sistema eléctrico ecuatoriano”, Escuela Politécnica Nacional, Quito, Ecuador, Oct. 2020.

[14] G. Bontempi, S. Ben Taieb, and Y. Le borgne, “Machine learning strategies for time series forecasting,” Berlin Germany, Jul. 2012, vol. 138, pp. 62–77.

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.