Análisis QV para la Identificación de Zonas Vulnerables a un Colapso de Tensión: Un Caso de Estudio
QV Analysis for the Identification of Vulnerable Zones to Voltage Collapse: A Study Case
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- M. Ayala , H. Benavides , C. Riba , Sistema de Generación Energía Sumergible Basado en un Vórtice Gravitacional con Sifón para Comunidades Aisladas , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- R. Herrera, L. Herrera, Sistemas de Comunicaciones y Redes de Datos en Smart Grids, una Revisión al Estado del Arte , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- J.P. Palacios, M. Samper, A. Vargas, Tarifación Dinámica de Redes Inteligentes de Distribución Usando Optimización Multiobjetivo , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- D. Jiménez, W. Vargas, Ubicación Óptima de Unidades de Medición Sincrofasoriales PMU’s para mejorar la Observabilidad de un Sistema Eléctrico de Potencia , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- M. Nieto , Formulación de un Marco de Referencia para la Integración de la Convergencia de Tecnologías Operacionales y de Información al Modelo de Gestión del CENACE , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- C. Tapia, J. Polo, Análisis de Largo Plazo de la Generación Eléctrica en Plantas Solares Térmicas de Concentración , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- F.R. Posso, J. P. Sánchez, J. Siguencia , Estimación del Potencial de Producción de Hidrógeno a partir de Energía Solar Fotovoltaica en Ecuador , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- G. Argüello, J. Cepeda, D. Echeverría, S. Falcones, J. Layana, Desafíos en la Implementación de un Laboratorio de Simulación Digital en Tiempo Real de Sistemas Eléctricos de Potencia , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- P. Banda , C. Gutiérrez , Simulación de un Sistema Recuperador de Calor para Gases de Escape de Motogeneradores a Crudo , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
- A. Riofrio, D. Carrión, D. Vaca, Propuesta de Modelo de Operación Aplicado a Micro Redes Fotovoltaicas en Generación Distribuida , Revista Técnica "energía": Vol. 12 Núm. 1 (2016): Revista Técnica "energía", Edición No. 12
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Rodolfo Rosés, Dario Carestía, Guillermo Gizzi, Implementación de Aplicaciones EMS en un Sistema de Subtransmisión , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
Las redes radiales de alta tensión son muy propensas a sufrir inestabilidades de tensión cuando se presentan fallas. Dentro de las acciones preventivas ante este tipo de eventos, la instalación de compensación de potencia reactiva en las zonas con más problemas de tensión es una alternativa económica y sencilla de aplicar. Trabajos previos han utilizado el método de las curvas QV basados en flujos de potencia en estados de contingencia para identificar tales zonas. Sin embargo, este procedimiento es criticado debido a que no contempla el efecto dinámico de elementos que cambian su comportamiento de acuerdo a los niveles de tensión, especialmente en escenarios de contingencia. Con el fin de subsanar esta crítica, este artículo propone el uso de las mismas curvas QV basándose en los puntos de operación resultantes de simulaciones dinámicas. Para evaluar la metodología propuesta, se utilizó el modelo de la red radial de alta tensión de la Patagonia, al sur de Argentina, por medio del software PSS/E en conjunto con el lenguaje de programación Python. Los resultados detectaron las zonas más propensas a la inestabilidad de tensión y el requerimiento de potencia reactiva necesaria para que la red opere en niveles de tensión aceptables. La metodología propuesta puede ser replicada en cualquier tipo de red. Por ejemplo, en el contexto latinoamericano, se podría utilizar en posibles futuras expansiones de red, especialmente en aquellas que vinculen países como Ecuador con Colombia o Perú, o también el Sistema Interconectado Centroamericano.
Visitas del artículo 1184 | Visitas PDF 426
Descargas
- R. Kyomugisha, C. M. Muriithi, and M. Edimu, “Voltage stability enhancement of the Uganda power system network,” in 2021 IEEE PES/IAS PowerAfrica, PowerAfrica 2021, 2021, pp. 1–5.
- S. Opana, J. K. Charles, and A. Nabaala, “STATCOM Application for Grid Dynamic Voltage Regulation: A Kenyan Case Study,” 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, 2020.
- P. Chawla and B. Singh, “Voltage Stability Assessment and Enhancement Using STATCOM - A Case Study,” Eng. Technol. Int. J. Electr. Comput. Eng., vol. 7, no. 12, p. 148, 2013.
- CIGRE, CIGRE Green Books: Flexible AC Transmission Systems: FACTS, 1st ed. Springer International Publishing, 2020.
- J. Park, S. Yeo, and J. Choi, “Development of ± 400Mvar World Largest MMC STATCOM,” in 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 2018, pp. 2060–2063.
- B. Gao, G. K. Morison, and P. Kundur, “Voltage Stability Evaluation using Modal Analysis,” IEEE Power Eng. Rev., vol. 12, no. 11, p. 41, 1992.
- F. Ruiz-Tipan, C. Barrera-Singana, and A. Valenzuela, “Reactive power compensation using power flow sensitivity analysis and QV curves,” in 2020 IEEE ANDESCON, ANDESCON 2020, 2020.
- T. Van Cutsem and C. Vournas, Voltage stability of electric power systems. 2008.
- C. W. Taylor, N. J. Balu, and D. Maratukulam, Power System Voltage Stability. McGraw-Hill, 1994.
- X. Liang, H. Chai, and J. Ravishankar, “Analytical Methods of Voltage Stability in Renewable Dominated Power Systems: A Review,” Electricity, vol. 3, no. 1, pp. 75–107, 2022.
- B. H. Chowdhury and C. W. Taylor, “Voltage stability analysis: V-Q power flow simulation versus dynamic simulation,” IEEE Trans. Power Syst., vol. 15, no. 4, pp. 1354–1359, 2000.
- A. Rijesh and S. Chakraborty, “Performance analysis of smart device : STATCOM for grid application,” in 2017 IEEE Region 10 Symposium (TENSYMP), 2017, pp. 1–5.
- N. Manjul and M. S. Rawat, “PV/QV Curve based Optimal Placement of Static Var System in Power Network using DigSilent Power Factory,” in 2018 IEEE 8th Power India International Conference (PIICON), 2018.
- R. Kumar, A. Mittal, N. Sharma, I. V. Duggal, and A. Kumar, “PV and QV Curve Analysis Using Series and Shunt Compensation,” in 2020 IEEE 9th Power India International Conference (PIICON), 2020.
- M. Khaled and A. O. A. Elsayed, “Voltage Profile Enhancement in Middle District of Sudan Electric Grid Using Neplan Software,” in 2019 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2019, pp. 1–6.
- J. E. Sarmiento et al., “Finding unstable operating points via one-dimensional manifolds,” 2019 IEEE Milan PowerTech, PowerTech 2019, 2019.
- V. N. Sewdien, R. Preece, J. L. R. Torres, and M. A. M. M. Van Der Meijden, “Evaluation of PV and QV based voltage stability analyses in converter dominated power systems,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2018-Octob, pp. 161–165, 2018.
- T. Van Cutsem et al., “IEEE PES Task Force on Test Systems for Voltage Stability Analysis and Security Assessment Technical Report,” 2015.
- Y. Lou, Z. Ou, Z. Tong, W. Tang, Z. Li, and K. Yang, “Static Volatge Stability Evaluation on the Urban Power System by Continuation Power Flow,” in 2022 5th International Conference on Energy, Electrical and Power Engineering (CEEPE), 2022, pp. 833–838.
- TRANSENER S.A, “Guía de Referencia del Sistema de Transporte de Energía Eléctrica en Alta Tensión 2022-2029,” 2021.








