Evaluación del desempeño de modelos LSTM y XGBoost en la predicción de la demanda eléctrica del sistema ecuatoriano
Performance Evaluation of LSTM and XGBoost Models for Electric Demand Forecasting in the Ecuadorian Power System
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Byron Chiguano, Juan Ramírez, Franklin Quilumba, Carlos Gallardo, Estimación de los Parámetros Eléctricos de un Generador Sincrónico basada en Mediciones de Laboratorio usando Métodos de Optimización No Lineal , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Roberto Sanchez, Patricio Barrera, Metodología basada en Cadenas de Markov para la Predicción de la Demanda y Toma de Decisiones en el corto plazo. Caso de Estudio: Empresa Eléctrica Quito , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Javier Fontalvo, Paola Ramírez, Joffre Constante, Prospectiva de Autogeneración en el Ecuador mediante uso de Modelo LEAP , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Diego Jijón, Jessica Constante, Geovanna Villacreses, Tania Guerrero, Estimación del rendimiento de aerogeneradores de 2 MW en el Ecuador: Potencial Eolo-Eléctrico , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- Alberto Rios, Diego Taipe, Manuel Otorongo, Optimización del Consumo Eléctrico de los Sistemas de Iluminación en Espacios Interiores de la Universidad Técnica de Ambato , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- O. Pineda, S. Espinel , M. Ruiz, Diseño e Implementación de un Sistema de Gestión de Energía Enfocado en el Control de Equipos y Luminarias , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Rubén Nogales, Jesús Guamán, Carlos Vargas, Alberto Ríos, Plataforma Cloud de Monitoreo del Funcionamiento de una Electrolinera Solar Fotovoltaica , Revista Técnica "energía": Vol. 15 Núm. 1 (2018): Revista Técnica "energía", Edición No. 15
- A. Ríos, D. Taipe, Manuel Otorongo, J. Guamán, Diseño e Implementación de una Plataforma CloudIoT de Control Inteligente de un Sistema de Iluminación Interior con Suministro en LVDC. , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Cristian Fabara, Diego Maldonado, Mauricio Soria, Antonio Tovar, Predicción de la Generación para un Sistema Fotovoltaico mediante la aplicación de técnicas de Minería de Datos , Revista Técnica "energía": Vol. 16 Núm. 1 (2019): Revista Técnica "energía", Edición No. 16
- Luis Paredes, Marcelo Pozo, Movilidad Eléctrica y Eficiencia Energética en el Sistema de Transporte Público del Ecuador un Mecanismo para Reducir Emisiones de CO2 , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Regresión Lineal para la Identificación del Punto de Máxima Potencia en Microrredes Híbridas Implementado en HYPERSIM , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Andrés Jacho, Diego Echeverría, Santiago Chamba, Carlos Lozada, Wilson Sánchez, Aplicación del Control Formador de Red en Microrredes con Sistemas de Almacenamiento de Energía para la Regulación Primaria de Frecuencia, Caso de Estudio: Islas Galápagos , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Despacho Económico de Energía de la Microrred en las Islas Galápagos Utilizando la Plataforma SimSEE , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Herramienta de Identificación Paramétrica, Validación y Sintonización de Reguladores de Velocidad Mediante Algoritmos de Optimización Heurísticos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
La predicción precisa de la demanda eléctrica es esencial para la operación técnico-económica del sistema eléctrico ecuatoriano. Este trabajo presenta una comparación entre los modelos Long Short-Term Memory (LSTM) y XGBoost para la predicción de la demanda de corto plazo, incorporando variables exógenas como la temperatura aparente y los feriados nacionales. Se utilizaron registros horarios del CENACE desde 2021 y datos meteorológicos satelitales del portal Open-Meteo. La estrategia empleada fue de predicción unipaso recursiva para un horizonte de 24 horas. Los resultados muestran que el modelo LSTM alcanza una mayor precisión , superando significativamente a XGBoost. Se concluye que la inclusión de variables exógenas mejora la exactitud del pronóstico y que la arquitectura LSTM constituye una herramienta robusta para la planificación operativa y energética del sistema ecuatoriano
Visitas del artículo 10 | Visitas PDF 1
Descargas
- A. Kumar Dubey, A. Kumar, V. García-Díaz, A. Kumar Sharma, y K. Kanhaiya, «Study and analysis of SARIMA and LSTM in forecasting time series data», Sustain. Energy Technol. Assess., vol. 47, p. 101474, oct. 2021, doi: 10.1016/j.seta.2021.101474.
- H. Abbasimehr, M. Shabani, y M. Yousefi, «An optimized model using LSTM network for demand forecasting», Comput. Ind. Eng., vol. 143, p. 106435, may 2020, doi: 10.1016/j.cie.2020.106435.
- M. Tan, S. Yuan, S. Li, Y. Su, H. Li, y F. He, «Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning», IEEE Trans. Power Syst., vol. 35, n.o 4, pp. 2937-2948, jul. 2020, doi: 10.1109/TPWRS.2019.2963109.
- B. ul Islam y S. F. Ahmed, «Short-Term Electrical Load Demand Forecasting Based on LSTM and RNN Deep Neural Networks», Math. Probl. Eng., vol. 2022, n.o 1, p. 2316474, 2022, doi: https://doi.org/10.1155/2022/2316474.
- M. Mohamed, F. E. Mahmood, M. A. Abd, M. Rezkallah, A. Hamadi, y A. Chandra, «Load Demand Forecasting Using eXtreme Gradient Boosting (XGboost)», en 2023 IEEE Industry Applications Society Annual Meeting (IAS), oct. 2023, pp. 1-7. doi: 10.1109/IAS54024.2023.10406613.
- T. Mazibuko y K. Akindeji, «Hybrid Forecasting for Energy Consumption in South Africa: LSTM and XGBoost Approach», Energies, vol. 18, n.o 16, p. 4285, ene. 2025, doi: 10.3390/en18164285.
- Ministerio de Turismo de Ecuador, «Calendario Oficial de Feriados Nacionales 2023-2025». diciembre de 2022. [En línea]. Disponible en: https://www.turismo.gob.ec/wp-content/uploads/2023/12/CALENDARIO-FERIADOS-2023-2025-06-12-2022-.pdf
- R. G. Steadman, «A Universal Scale of Apparent Temperature», J. Appl. Meteorol. Climatol., vol. 23, n.o 12, pp. 1674-1687, dic. 1984, doi: 10.1175/1520-0450(1984)023%3C1674:AUSOAT%3E2.0.CO;2.
- J. Kang y D. M. Reiner, «What is the effect of weather on household electricity consumption? Empirical evidence from Ireland», Energy Econ., vol. 111, p. 106023, jul. 2022, doi: 10.1016/j.eneco.2022.106023.
- S. Ozdemir, Feature Engineering Bookcamp. Simon and Schuster, 2022.
- E. Lewinson, Python for Finance Cookbook: Over 80 powerful recipes for effective financial data analysis. Packt Publishing Ltd, 2022.
- X. Vasques, Machine Learning Theory and Applications: Hands-on Use Cases with Python on Classical and Quantum Machines. John Wiley & Sons, 2024.
- V. Babuskhin y A. Kravchenko, Machine Learning System Design: With end-to-end examples. Simon and Schuster, 2025.
- «Writing a training loop from scratch | TensorFlow Core», TensorFlow. Accedido: 4 de noviembre de 2025. [En línea]. Disponible en: https://www.tensorflow.org/guide/keras/writing_a_training_loop_from_scratch
- «XGBoost Documentation — xgboost 3.1.1 documentation». Accedido: 4 de noviembre de 2025. [En línea]. Disponible en: https://xgboost.readthedocs.io/en/stable/index.html
- A. van Wyk, Machine Learning with LightGBM and Python: A practitioner’s guide to developing production-ready machine learning systems. Packt Publishing Ltd, 2023.
- T. Chen y C. Guestrin, «XGBoost: A Scalable Tree Boosting System», en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, en KDD ’16. New York, NY, USA: Association for Computing Machinery, ago. 2016, pp. 785-794. doi: 10.1145/2939672.2939785.
- S. S. M Paulraj, Introduction to Artificial Neural Networks. Vikas Publishing House, 2009.
- R. Rojas, Neural Networks: A Systematic Introduction. Springer Science & Business Media, 2013.
- S. Hochreiter y J. Schmidhuber, «Long Short-Term Memory», Neural Comput., vol. 9, n.o 8, pp. 1735-1780, nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
- J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.
- R. A. Yaffee y M. McGee, An Introduction to Time Series Analysis and Forecasting: With Applications of SAS® and SPSS®. Academic Press, 2000.
- P. Cichosz, Data Mining Algorithms: Explained Using R. John Wiley & Sons, 2015.
- I. Gridin, Time Series Forecasting using Deep Learning: Combining PyTorch, RNN, TCN, and Deep Neural Network Models to Provide Production-Ready Prediction Solutions (English Edition). BPB Publications, 2021.








