Skip to main navigation menu Skip to main content Skip to site footer

Predictive recommendation model for the energy dispatch of the Paute Hydropower complex

Modelo predictivo de recomendación para el despacho energético del complejo Hidroeléctrico Paute




Section
TECNOLÓGICOS E INNOVACIÓN

How to Cite
Predictive recommendation model for the energy dispatch of the Paute Hydropower complex. (2022). Revista Técnica "energía", 18(2), PP. 104-112. https://doi.org/10.37116/revistaenergia.v18.n2.2022.478

Dimensions
PlumX

How to Cite

Predictive recommendation model for the energy dispatch of the Paute Hydropower complex. (2022). Revista Técnica "energía", 18(2), PP. 104-112. https://doi.org/10.37116/revistaenergia.v18.n2.2022.478

Download Citation

license

Similar Articles

1-10 of 102

You may also start an advanced similarity search for this article.

This work proposes to make the most of the water resource used for the generation of electricity in Ecuador. Three models based on artificial intelligence have been made for the Mazar, Molino and Sopladora hydroelectric plants that belong to the Paute-Integral hydroelectric complex. For the implementation of the predictive recommendation algorithms, the behavior of the Mazar, Molino and Sopladora plants was first modeled, after which optimization was carried out to maximize electricity generation according to the capacity of the hydroelectric plants and hydrology. Finally, with the results obtained, it is observed that the maximization of electricity generation is achieved for the Mazar and Molino plants. Regarding the Sopladora plant, whose energy dispatch depends directly on the electricity generation of the Molino plant, the evaluation point remains to measure the impact produced by the optimization of the Molino plant.


Article visits 838 | PDF visits 480


Downloads

Download data is not yet available.

[1] Asamblea Nacional de la Republica del Ecuador, LEY ORGANICA DEL SERVICIO PÚBLICO DE ENERGÍA ELECTRICA, Quito, Pichincha: LEY 0 REGISTRO OFICIAL SUPLEMENTO 418, 2015.
[2] CELEC, «www.celec.gob.ec,» 31 12 2015. [En línea]. Available: www.celec.gob.ec.
[3] O. Barboza, «Automatización de previsión de demanda horaria de potencia,» Revista Científica de la UCSA, pp. 4-14, 2014.
[4] I. F. Sinaluisa Lozano, A. F. Morocho Caiza y C. Marquez Zurita, «Predicción de demanda de energía eléctrica mediante redes neuronales artificiales,» Risti, pp. 505-519, 2019.
[5] N. Huang, L. Guobo y X. Dianguo, «A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest,» Energies, 2016.
[6] J. Zalamea, «POLÍTICAS DE DESPACHO PARA EL COMPLEJO HIDROELÉCTRICO PAUTE,» ECUACIER, 2012.
[7] G. T. Doran, «There's a S.M.A.R.T. way to write management's goals and objectives,» Management Review (AMA FORUM), vol. 70, pp. 35-36, 1981.
[8] CONELEC, Estudio y Gestion de la Demanda Electrica, Quito, Provincia, 2013.
[9] ARCONEL, Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano, Quito, Pichincha, 2018.
[10] CELEC EP;, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[11] CELEC EP, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[12] G. Argüello, INFORME OPERATIVO ANUAL, 2019.

Sistema OJS 3.4.0.9