Predictive recommendation model for the energy dispatch of the Paute Hydropower complex
Modelo predictivo de recomendación para el despacho energético del complejo Hidroeléctrico Paute
How to Cite
Download Citation
Show authors biography
Similar Articles
- Josue Ortiz, Jefferson Tayupanda, Carlos Quinatoa, Solution to the short-term hydrothermal dispatch problem through nonlinear programming applied to single and multi-node systems , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Parameter Identification, Validation and Tunning of Speed Regulator Tool Using Heuristic Optimization Algorithms , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Economic Energy Dispatch of the Micro-Grid in the Galapagos Islands Using the Simsee Platform , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Diego Lojano, Juan Palacios, Optimal Power Flow in Electrical Power Systems with Environmental Considerations , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Flavio Villacrés, Alexis Torres, Marlon Chamba, Carlos Lozada, Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Paulo Castro, Jaime Cepeda, Impact Analysis of Non-Dispatchable Renewable Energies Penetration in Power System Operational Security , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Transient Stability Analysis Using the Concept of Inertia and Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Analysis and Characterization of Power Quality using Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Nelson Granda, Karen Paguanquiza, System Frequency Response Models for the Ecuadorian Interconnected Power System , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Daniel Orbe, Luis Salazar, Paúl Vásquez, Estimation and Sensitivity Analysis of Electric Buses Energy Consumption through Microscopic Simulations on Public Transport Lines , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
You may also start an advanced similarity search for this article.
This work proposes to make the most of the water resource used for the generation of electricity in Ecuador. Three models based on artificial intelligence have been made for the Mazar, Molino and Sopladora hydroelectric plants that belong to the Paute-Integral hydroelectric complex. For the implementation of the predictive recommendation algorithms, the behavior of the Mazar, Molino and Sopladora plants was first modeled, after which optimization was carried out to maximize electricity generation according to the capacity of the hydroelectric plants and hydrology. Finally, with the results obtained, it is observed that the maximization of electricity generation is achieved for the Mazar and Molino plants. Regarding the Sopladora plant, whose energy dispatch depends directly on the electricity generation of the Molino plant, the evaluation point remains to measure the impact produced by the optimization of the Molino plant.
Article visits 838 | PDF visits 480
Downloads
[1] Asamblea Nacional de la Republica del Ecuador, LEY ORGANICA DEL SERVICIO PÚBLICO DE ENERGÍA ELECTRICA, Quito, Pichincha: LEY 0 REGISTRO OFICIAL SUPLEMENTO 418, 2015.
[2] CELEC, «www.celec.gob.ec,» 31 12 2015. [En línea]. Available: www.celec.gob.ec.
[3] O. Barboza, «Automatización de previsión de demanda horaria de potencia,» Revista Científica de la UCSA, pp. 4-14, 2014.
[4] I. F. Sinaluisa Lozano, A. F. Morocho Caiza y C. Marquez Zurita, «Predicción de demanda de energía eléctrica mediante redes neuronales artificiales,» Risti, pp. 505-519, 2019.
[5] N. Huang, L. Guobo y X. Dianguo, «A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest,» Energies, 2016.
[6] J. Zalamea, «POLÍTICAS DE DESPACHO PARA EL COMPLEJO HIDROELÉCTRICO PAUTE,» ECUACIER, 2012.
[7] G. T. Doran, «There's a S.M.A.R.T. way to write management's goals and objectives,» Management Review (AMA FORUM), vol. 70, pp. 35-36, 1981.
[8] CONELEC, Estudio y Gestion de la Demanda Electrica, Quito, Provincia, 2013.
[9] ARCONEL, Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano, Quito, Pichincha, 2018.
[10] CELEC EP;, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[11] CELEC EP, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[12] G. Argüello, INFORME OPERATIVO ANUAL, 2019.














