Direct Speed Control of a 9 MW DFIG Wind Turbine

Main Article Content

Adrián Pozo
Eduardo Muñoz
Edy Ayala
https://orcid.org/0000-0003-2528-4380

Abstract

In the present work, a control strategy for Maximum Power Point Tracking (MPPT) of a wind turbine based on a Doubly Fed Induction Generator (DFIG) is described. This strategy is developed according to the theory of Di-rect Speed Control (DSC) which includes a state observer. This strategy con-siders the Low Shaft Speed (LSS) as an input and the Iqr reference current as the output. This control mechanism allows monitoring the MPPT; thus, changing the Power coefficient (Cp) to its optimal value during the operation of the wind turbine. The controller, among its main features, is configured to work with the incorporation of different wind inputs; fact that permits evaluating the system response to disturbances and variations. For simulations tests, a 1,5 MW wind turbine has been modeled in Matlab and Fatigue, Aero-dynamics, and Structures and Turbulence FAST software. The strategy has been compared to a PI MPPT controller and has demonstrated improvements in terms of speed and output power extraction.

Downloads

Download data is not yet available.

Article Details

How to Cite
Pozo , A. ., Muñoz, E. ., & Ayala, E. (2021). Direct Speed Control of a 9 MW DFIG Wind Turbine. Revista Técnica "energía", 18(1), PP. 11–18. https://doi.org/10.37116/revistaenergia.v18.n1.2021.435
Section
SISTEMAS ELÉCTRICOS DE POTENCIA

References

[1] World Wind Energy Association, «World Wind Energy Report 2010,» WWEA, 2010.
[2] W. Zhi-Nong, «The intelligent control of DFIG-based wind generation,» Conference on Sustain Power Gener. Supply, pp. 1-5, 2009.
[3] E. Ayala y S. Simani, «Perturb and observe maximum power point tracking algorithm for permanent magnet synchronous generator wind turbine systems.,» Proceedings of the 15th European Workshop on Advanced Control and Diagnostics., pp. 1-11, 2019.
[4] S. Muller, M. Deicke y R. Doncker, «Doubly-Fed Induction Generators Systems for Wind Turbines,» IEEE Industry Applications Magazine, 2000.
[5] T. L. Sow, Nonlinear control of the wind turbine at DFIG for a participation to the regulating of the frequency of the network, Quebec, 2012.
[6] G. Abad, J. Lopez, R. A. Miguel, L. Marroyo y G. Iwanski, Doubly Fed Induction Machine, WILEY, 2011.
[7] The MathWorks Inc., Matlab, Massachusetts.
[8] National Renewable Energy Laboratory (NREL), Fatigue Aerodynamics Structures and Turbulence, 2020.
[9] E. Tremblay, S. Atayde y A. Chandra, «Direct Power Control of a DFIG-based WECS with Active Filter Capabilities,» IEEE Electrical Power and Energy, 2009.
[10] M. Magdi y O. Mojeed, «Adaptive and Predictive Control Strategies for Wind Turbine Systems: A Survey,» IEEE Journal of Automatica SINICA, 2019.
[11] M. Hallak, M. Hasni y M. Menaa, «Modeling and Control of a Doubly Fed Induction Generator Base Wind Turbine System,» 3rd CISTEM’18, 2018.
[12] P. Gajewski y K. Pienkowski, «Direct Torque Control and Direct Power Control of wind turbine system with PMSG,» Wrocław University of Technology, Department of Electrical Machines, Drives and Measurements, 2016.
[13] N. Mendis, K. Muttaqi, S. Sayeef y S. Perera, «Standalone Operation of Wind Turbine-Based Variable Speed Generators With Maximum Power Extraction Capability,» IEEE Transactions on Energy Conversion, vol. 27, nº 4, pp. 822-834, 2012.
[14] NREL, Simulation for Wind Turbine Generators—With FAST and MATLAB-Simulink Modules, United States: NREL, 2014.
[15] J. Mohammadi, S. Vaez-Zadeh, . S. Afsharnia y E. Daryabeigi, «A Combined Vector and Direct Power Control for DFIG-Based Wind Turbines,» IEEE Transactions on Sustainable Energy, vol. 5, nº 3, 2014.

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.