Determination of oscillatory modes in the SADI from the analysis of PMU measurements of ambient data in Low Voltage

Main Article Content

Omar Ramos
https://orcid.org/0000-0002-8472-9370
Graciela Colomé

Abstract

This paper presents the canonical correlation analysis (CCA) and Yule Walker (YW) analysis of PMU (Phasor Measurement Unit) measurements recorded in the framework of the MedFasee BT Argentina Project that observes the dynamics of the Sistema Argentino de Interconexión (SADI). The CCA and YW method are used to determine the low frequency oscillatory modes with low damping present in the voltage and frequency signals. These modes are characterized by their frequency, damping and pseudo-energy. The CCA and YW method is applied to ambient type data measurements of PMU´s. This study, besides allowing the detection of low damping modes, allowed to determinate different parameters of the methods as signal to be analyzed, which is a requirement for the preprocessing, as well as the definition of the analysis window, sampling period and system order.

Downloads

Download data is not yet available.

Article Details

How to Cite
Ramos, O., & Colomé, G. . (2021). Determination of oscillatory modes in the SADI from the analysis of PMU measurements of ambient data in Low Voltage. Revista Técnica "energía", 18(1), PP. 48–58. https://doi.org/10.37116/revistaenergia.v18.n1.2021.467
Section
SISTEMAS ELÉCTRICOS DE POTENCIA

References

[1] I. C. Decker, D. Dotta, M. N. Agostini, A. S. Silva, B. Meyer, and S. L. Zimath, “Installation and monitoring experiences of the first synchronized measurement system in the Brazilian national grid,” 2008 IEEE/PES Transm. Distrib. Conf. Expo. Lat. Am. T D-LA, pp. 1–7, 2008, doi: 10.1109/TDC-LA.2008.4641695.
[2] Z. Jin, H. Zhang, and C. Li, “WAMS light and its deployment in China,” 5th Int. Conf. Electr. Util. Deregul. Restruct. Power Technol., pp. 1373–1376, 2015.
[3] Z. Jin and H. Zhang, “Noise characteristics and fast filtering of synchronized frequency measurement in low voltage grid,” 2016 4th IEEE Int. Conf. Smart Energy Grid Eng. SEGE 2016, pp. 398–403, 2016, doi: 10.1109/SEGE.2016.7589559.
[4] X. Xie, Y. Xin, J. Xiao, J. Wu, and Y. Han, “WAMS applications in chinese power system,” IEEE Power Energy Mag., vol. 4, no. 1, pp. 54–63, 2006, doi: 10.1109/MPAE.2006.1578532.
[5] R. Bialecki, “Identificação em tempo real de Oscilações Eletromecânicas utilizando Sincrofasores,” M.S. thesis, Dept. Ingeniería Eléctrica, Universidad Federal de Santa Catarina, Florianopolis, Brasil, 2014.
[6] I. C. Decker, R. Pina, M. N. Agostini, P. Cordeiro, R. Bialecki, and V. Zimmer, “Manual de Utilización MedPlot.” 2017.
[7] J. W. Pierre, “Initial results in electromechanical mode identification from ambient data,” IEEE Trans. Power Syst., vol. 12, no. 3, pp. 1245–1251, 1997, doi: 10.1109/59.630467.
[8] N. Jingmin, S. Chen, and L. Feng, “Estimating The Electromechanical Oscillation Characteristics of Power System Based on Measured Ambient Data Utilizing Stochastic Subspace Method,” 2011.
[9] L. Dosiek, N. Zhou, S. Member, J. W. Pierre, Z. Huang, and D. J. Trudnowski, “Mode Shape Estimation Algorithms Under Ambient Conditions: A Comparative Review,” IEEE Trans. POWER Syst., vol. 28, no. 2, pp. 1–9, 2013.
[10] H. R. Ali, “Inter-Area power oscillation identification using synchronized ambient and ringdown data,” Proc. - 2013 Int. Conf. Inf. Technol. Electr. Eng. "Intelligent Green Technol. Sustain. Dev. ICITEE 2013, vol. 1, no. 1, pp. 375–379, 2013, doi: 10.1109/ICITEED.2013.6676271.
[11] S. Xie, X. Wang, C. Qu, X. Wang, and J. Guo, “Impacts of different wind speed simulation methods on conditional reliability indices,” Int. Trans. Electr. energy Syst., vol. 20, no. December 2010, pp. 1–6, 2013, doi: 10.1002/etep.
[12] M. Anderson, N. Zhou, J. Pierre, and R. Wies, “Bootstrap-based confidence interval estimates for electromechanical modes from multiple output analysis of measured ambient data,” 2005 IEEE Power Eng. Soc. Gen. Meet., vol. 2, no. 2, p. 1474, 2005, doi: 10.1109/pes.2005.1489237.
[13] L. Dosiek, D. J. Trudnowski, and J. W. Pierre, “Model order sensitivity in ARMA-based electromechanical mode estimation algorithms under ambient power system conditions,” IEEE Power Energy Soc. Gen. Meet., vol. 2018-Janua, no. 6, pp. 1–5, 2018, doi: 10.1109/PESGM.2017.8273803.
[14] N. Zhou, J. W. Pierre, and J. F. Hauer, “Initial results in power system identification from injected probing signals using a subspace method,” IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1296–1302, 2006, doi: 10.1109/TPWRS.2006.879292.
[15] R. W. Wies, J. W. Pierre, and D. J. Trudnowski, “Use of ARMA Block Processing for Estimating Stationary Low-Frequency Electromechanical Modes of Power Systems,” IEEE Power Eng. Rev., vol. 22, no. 11, p. 57, 2002, doi: 10.1109/MPER.2002.4311824.
[16] D. J. Trudnowski, J. W. Pierre, N. Zhou, J. F. Hauer, and M. Parashar, “Performance of three mode-meter block-processing algorithms for automated dynamic stability assessment,” IEEE Trans. Power Syst., vol. 23, no. 2, pp. 680–690, 2008, doi: 10.1109/TPWRS.2008.919415.