Linear Regression for the Identification of the Maximum Power Point in Hybrid Microgrids Implemented in HYPERSIM

Main Article Content

Carlos Lozada
David Panchi
Wilson Sánchez
https://orcid.org/0009-0009-1537-4850
Andrés Jacho
https://orcid.org/0009-0004-0170-6010

Abstract

The present paper focuses on the optimization of maximum power point tracking (MPPT) in photovoltaic systems using a linear regression approach. The main objective is to develop an MPPT algorithm using linear regression techniques to improve the accuracy in identifying and tracking the maximum power point. The proposed algorithm is developed in MATLAB/Simulink software and validated through experimental tests. Subsequently, the application of the algorithm is extended to an electrical network modeled and simulated in the HYPERSIM tool environment, this software will allow to address in a more detailed and accurate way the instantaneous dynamics of electrical and control variables in complex systems, through the variation of variables such as temperature and irradiation.


The innovative contribution of this project is not only limited to the improvement of MPPT algorithms, but also comprehensively addresses the integration of renewable energies in electrical systems. The effectiveness of the linear regression-based algorithm represents a crucial advance in maximizing control efficiency and response in photovoltaic systems. Optimizing the conversion of solar energy into usable electricity not only increases the cost-effectiveness and sustainability of these systems, but also highlights the critical role they play in the transition to a more sustainable electricity supply.

Downloads

Download data is not yet available.

Article Details

How to Cite
Lozada, C., Panchi, D., Sánchez, W., & Jacho, A. (2024). Linear Regression for the Identification of the Maximum Power Point in Hybrid Microgrids Implemented in HYPERSIM. Revista Técnica "energía", 20(2), PP. 34–46. https://doi.org/10.37116/revistaenergia.v20.n2.2024.618
Section
SISTEMAS ELÉCTRICOS DE POTENCIA

References

M. S. Mahmoud, S. Azher Hussain, and M. A. Abido, “Modeling and control of microgrid: An overview,” J Franklin Inst, vol. 351, no. 5, pp. 2822–2859, 2014, doi: 10.1016/j.jfranklin.2014.01.016.

C. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. Álvarez-Alvarado, H. Rodriguez-Resendiz, A. M. Herrera-Navarro, and O. Rodríguez-Abreo, “Artificial neural networks in mppt algorithms for optimization of photovoltaic power systems: A review,” Micromachines, vol. 12, no. 10. MDPI, Oct. 01, 2021. doi: 10.3390/mi12101260.

M. A. G. De Brito, L. Galotto, L. P. Sampaio, G. De Azevedo Melo, and C. A. Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 1156–1167, 2013, doi: 10.1109/TIE.2012.2198036.

N. Padmavathi, A. Chilambuchelvan, and N. R. Shanker, “Maximum Power Point Tracking During Partial Shading Effect in PV System Using Machine Learning Regression Controller,” Journal of Electrical Engineering and Technology, vol. 16, no. 2, pp. 737–748, Mar. 2021, doi: 10.1007/s42835-020-00621-4.

C. Lozada and D. Panchi, “Implementación de Hardware In The Loop para el Análisis de Escenarios de Control de Frecuencia en una Microrred Utilizando WAMS,” Revista Técnica “energía,” vol. 19, no. 2, pp. 69–80, Jan. 2023, doi: 10.37116/revistaenergia.v19.n2.2023.558.

M. Sarvi and A. Azadian, “A comprehensive review and classified comparison of MPPT algorithms in PV systems,” Energy Systems, vol. 13, no. 2. Springer Science and Business Media Deutschland GmbH, pp. 281–320, May 01, 2022. doi: 10.1007/s12667-021-00427-x.

R. B. A. Koad, A. F. Zobaa, and A. El-Shahat, “A Novel MPPT Algorithm Based on Particle Swarm Optimization for Photovoltaic Systems,” IEEE Trans Sustain Energy, vol. 8, no. 2, pp. 468–476, Apr. 2017, doi: 10.1109/TSTE.2016.2606421.

R. Rajesh and M. Carolin, “Renewable and Sustainable Energy Reviews,” Elsevier, 2015.

Chiu Chian-Song, “T–S fuzzy maximum power point tracking control of solar power generation systems,” IEEE Trans Energy Convers , 2010.

Peter Pradeep and Agarwal Vivek, “On the Input Resistance of a Reconfigurable Switched CapacitorDC–DC Converter - Based Maximum Power Point Tracker of a Photovoltaic Source,” IEEE Trans on Power Electronics , 2012.

S. Motahhir, A. El Hammoumi, and A. El Ghzizal, “The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm,” Journal of Cleaner Production, vol. 246. Elsevier Ltd, Feb. 10, 2020. doi: 10.1016/j.jclepro.2019.118983.

Daniel. Peña, Análisis de datos multivariantes. McGraw-Hill/Interamericana, 2002.

“DATA MINING.”

S. Bae and A. Kwasinski, “Dynamic modeling and operation strategy for a microgrid with wind and photovoltaic resources,” IEEE Trans Smart Grid, vol. 3, no. 4, pp. 1867–1876, 2012, doi: 10.1109/TSG.2012.2198498.

Institute of Electrical and Electronics Engineers., Simulation Conference, 2008. WSC 2008. Winter : [7-10 December, 2008, InterContinental Hotel, Miami, Florida, USA]. IEEE Service Center, 2008.

Similar Articles

<< < 1 2 3 

You may also start an advanced similarity search for this article.