Identificación de Máquinas Críticas ante Problemas de Estabilidad Transitoria basado en Data Mining y Mediciones Sincrofasoriales

Main Article Content

D. Echeverría
https://orcid.org/0000-0002-1743-9234
J. Cepeda

Abstract

This paper presents a new methodology based on data mining to identify the cluster of critical machines, i.e. the machines responsible for the loss of synchronization in a power system after the occurrence of a disturbance. Since only the postfault trajectory is required, the proposed method is independent of system modeling and could be extended for multi-swing stability assessment. Numerical results obtained by applying the approach on the IEEE New England test system demonstrates the feasibility and effectiveness that could be achieved in identifying the critical machines, which is also of great value for assessing transient stability problems and defining suitable emergency control actions.

Downloads

Download data is not yet available.

Article Details

How to Cite
Echeverría , D. ., & Cepeda, J. . . (2015). Identificación de Máquinas Críticas ante Problemas de Estabilidad Transitoria basado en Data Mining y Mediciones Sincrofasoriales. Revista Técnica "energía", 11(1), PP. 178–184. https://doi.org/10.37116/revistaenergia.v11.n1.2015.86
Section
TECNOLÓGICOS E INNOVACIÓN

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.