Integración de un Sistema de Monitoreo de Condiciones Climáticas al Sistema de Gestión de Energía Nacional
Contenido principal del artículo
Resumen
Este trabajo presenta el desarrollo de un sistema para la adquisición de datos en tiempo real de variables climáticas como son temperatura y condiciones climáticas; y su integración con el Sistema de Gestión de Energía - EMS de CENACE. Las variables climáticas adquiridas servirán para el análisis de la relación existente entre temperatura y demanda eléctrica en diferentes ciudades de Ecuador. Adicionalmente, la presentación de las condiciones meteorológicas en un despliegue operativo dentro del SCADA/EMS ayudará a la toma de decisiones en la operación en tiempo real del Sistema Nacional Interconectado. Este articulo mostrará los distintos conceptos y componentes utilizados para el desarrollo de este sistema, así como los resultados alcanzados a nivel de visualización. Para finalizar se presentarán los resultados de un análisis de la variabilidad de la demanda diaria horaria por seis meses, enfocándose en las ciudades de Guayaquil, Quito y Cuenca. A través de la técnica de minería de datos llamada Funciones Empíricas Ortogonales se explicará la correlación existente entre la amplitud de los vectores empíricos ortogonales calculados de la demanda y la temperatura de cada ciudad.
Descargas
Detalles del artículo
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Citas
[2] C. D. E. T. Se and S. Internacional, “Capítulo 3 : Elementos sensores y transductores de temperatura,” pp. 23–68, 2018.
[3] P. Van Eijsden, “Situational awareness,” Ned. Tijdschr. Geneeskd., vol. 159, no. 30, pp. 186–187, 2015.
[4] “Weather API - OpenWeatherMap.” .
[5] “Python’s Requests Library (Guide) – Real Python.” .
[6] D. K. Mahto and L. Singh, “A dive into Web Scraper world,” in 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2016, pp. 689–693.
[7] C. Giannakopoulos and B. Psiloglou, “Trends in energy load demand for Athens, Greece: weather and on-weather related factors,” Clim. Res., vol. 31, pp. 97–108, 2006.
[8] A. Henley and J. Peirson, “Non‐Linearities in Electricity Demand and Temperature: Parametric Versus Non‐Parametric Methods,” Oxf. Bull. Econ. Stat., vol. 59, no. 1, pp. 149–162, 1997.
[9] M. Ali, M. J. Iqbal, and M. Sharif, “Relationship between extreme temperature and electricity demand in Pakistan,” Int. J. Energy Environ. Eng., vol. 4, no. 1, p. 36, 2013.
[10] C. L. Hor, S. J. Watson, and S. Majithia, “Analyzing the impact of weather variables on monthly electricity demand,” IEEE Trans. Power Syst., vol. 20, no. 4, pp. 2078–2085, 2005.
[11] M. Bessec and J. Fouquau, “The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach,” Energy Econ., vol. 30, no. 5, pp. 2705–2721, 2008.
[12] A. Pardo, V. Meneu, and E. Valor, “Temperature and seasonality influences on Spanish electricity load,” Energy Econ., vol. 24, no. 1, pp. 55–70, 2002.
[13] D. J. Sailor and J. R. Muiqoz, “Pergamon pll:. S0360-5442(97)000M-0,” vol. 22, no. 10, pp. 987–998, 1997.
[14] H. Moazamigoodarzi, R. Gupta, S. Pal, P. J. Tsai, S. Ghosh, and I. K. Puri, “Modeling temperature distribution and power consumption in IT server enclosures with row-based cooling architectures,” Appl. Energy, vol. 261, no. August 2019, pp. 1–13, 2020.
[15] M. Shakeri et al., “An intelligent system architecture in home energy management systems (HEMS) for efficient demand response in smart grid,” Energy Build., vol. 138, pp. 154–164, 2017.
[16] E. Valor, V. Meneu, and V. Caselles, “Daily Air Temperature and Electricity Load in Spain,” J. Appl. Meteorol., vol. 40, no. 8, pp. 1413–1421, Aug. 2001.
[17] “OpenWeatherMap® API: Get Historical & Current Weather Data | RapidAPI.” .
[18] S. Alburqueque, “Funciones ortogonales empíricas y su aplicación a datos de temperatura superficial del mar,” 2019.
[19] J. C. Cepeda, Real Time Vulnerability Assessment of Electric Power Systems Using Synchronized Phasor Measurement Technology. 2013.
[20] 2011 Bruce, “Variabilidad y tendencias del nivel del mar en las costas de las penìnsula Ibérica y zonas limítrofes:su relación con parámetros meteorológicos,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699, 2013.
[21] M. Kezunovic and A. Bose, “The future EMS design requirements,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., pp. 2354–2363, 2013.
[22] P. Schober and L. A. Schwarte, “Correlation coefficients: Appropriate use and interpretation,” Anesth. Analg., vol. 126, no. 5, pp. 1763–1768, 2018.