Modelo predictivo de recomendación para el despacho energético del complejo Hidroeléctrico Paute
Predictive recommendation model for the energy dispatch of the Paute Hydropower complex
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Josue Ortiz, Jefferson Tayupanda, Carlos Quinatoa, Solución al problema de despacho hidrotérmico a corto plazo mediante la programación no lineal aplicada a sistemas de uno y varios nodos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Herramienta de Identificación Paramétrica, Validación y Sintonización de Reguladores de Velocidad Mediante Algoritmos de Optimización Heurísticos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Despacho Económico de Energía de la Microrred en las Islas Galápagos Utilizando la Plataforma SimSEE , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Diego Lojano, Juan Palacios, Flujo Óptimo de Sistemas Eléctricos de Potencia con Consideraciones Ambientales , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Flavio Villacrés, Alexis Torres, Marlo Chamba, Carlos Lozada, Estrategia Adaptativa para el Alivio de Carga en Sistemas Eléctricos de Potencia Basada en Regresión Lineal , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Paulo Castro, Jaime Cepeda, Análisis del Impacto de la Penetración de Energías Renovables no Gestionables en la seguridad operativa de los Sistemas Eléctricos de Potencia , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Análisis de Estabilidad Transitoria Utilizando el Concepto de Inercia y Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Análisis y Caracterización de la Calidad de Energía utilizando Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Nelson Granda, Karen Paguanquiza, Modelos de Respuesta de la Frecuencia para el Sistema Nacional Interconectado Ecuatoriano , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Daniel Orbe, Luis Salazar, Paúl Vásquez, Estimación y Análisis de Sensibilidad del Consumo Energético de Buses Eléctricos mediante Simulaciones Microscópicas en líneas de Transporte Público , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
El presente trabajo propone aprovechar al máximo el recurso hídrico utilizado para la generación de energía eléctrica en el Ecuador. Se ha realizado tres modelos basados en inteligencia artificial para las centrales hidroeléctricas Mazar, Molino y Sopladora que pertenecen al complejo hidroeléctrico Paute-Integral. Para la implementación de los algoritmos predictivos de recomendación, primero se modeló el comportamiento de las centrales Mazar, Molino y Sopladora, posterior a lo cual se procedió a la optimización para maximizar la generación eléctrica acorde a la capacidad de las centrales hidroeléctricas y la hidrología. Finalmente, con los resultados obtenidos, se logra la maximización de la generación eléctrica para las centrales Mazar y Molino. Respecto a la central Sopladora, cuyo despacho energético depende directamente de la generación eléctrica de la central Molino, queda como punto de evaluación medir el impacto producido por la optimización de la central Molino.
Visitas del artículo 835 | Visitas PDF 480
Descargas
[1] Asamblea Nacional de la Republica del Ecuador, LEY ORGANICA DEL SERVICIO PÚBLICO DE ENERGÍA ELECTRICA, Quito, Pichincha: LEY 0 REGISTRO OFICIAL SUPLEMENTO 418, 2015.
[2] CELEC, «www.celec.gob.ec,» 31 12 2015. [En línea]. Available: www.celec.gob.ec.
[3] O. Barboza, «Automatización de previsión de demanda horaria de potencia,» Revista Científica de la UCSA, pp. 4-14, 2014.
[4] I. F. Sinaluisa Lozano, A. F. Morocho Caiza y C. Marquez Zurita, «Predicción de demanda de energía eléctrica mediante redes neuronales artificiales,» Risti, pp. 505-519, 2019.
[5] N. Huang, L. Guobo y X. Dianguo, «A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest,» Energies, 2016.
[6] J. Zalamea, «POLÍTICAS DE DESPACHO PARA EL COMPLEJO HIDROELÉCTRICO PAUTE,» ECUACIER, 2012.
[7] G. T. Doran, «There's a S.M.A.R.T. way to write management's goals and objectives,» Management Review (AMA FORUM), vol. 70, pp. 35-36, 1981.
[8] CONELEC, Estudio y Gestion de la Demanda Electrica, Quito, Provincia, 2013.
[9] ARCONEL, Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano, Quito, Pichincha, 2018.
[10] CELEC EP;, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[11] CELEC EP, «Plan Estratégico 2017-2021,» Cuenca, 2019.
[12] G. Argüello, INFORME OPERATIVO ANUAL, 2019.







