Modelo Eléctrico de un Sistema Piezoeléctrico para Generación de Energía a Través de la Fuerza Aplicada en un Paso
Electrical Model of a Piezoelectric System for Generating Energy Through the Force Applied in a Step
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Jorge Paredes, Jaime Cepeda, Jorge Lozada, Parámetros para el Proceso de Molienda en Molinos Verticales Usando Métodos de Optimización , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Luis Cruz, Cristian Gallardo, Optimización de la Captación Solar mediante un Seguidor de Doble Eje Basado en Algoritmo Astronómico en una Estación Fotovoltaica de Pequeña Escala , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Nelson Granda, Karen Paguanquiza, Modelos de Respuesta de la Frecuencia para el Sistema Nacional Interconectado Ecuatoriano , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Brito, Wilson Sánchez, Evaluación del desempeño de modelos LSTM y XGBoost en la predicción de la demanda eléctrica del sistema ecuatoriano , Revista Técnica "energía": Vol. 22 Núm. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- William Quitiaquez, Andrés Argüello, Isaac Simbaña, Patricio Quitiaquez, Evaluación del Comportamiento de Motores a Gasolina Mediante Simulación del Flujo de Aire a Través del Cuerpo de Aceleración , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Herramienta de Identificación Paramétrica, Validación y Sintonización de Reguladores de Velocidad Mediante Algoritmos de Optimización Heurísticos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Fernando Toapanta, Melany Oña, Estudio Numérico con CFD de la Refrigeración en una Cabina Vehicular con dos Refrigerantes R32 y R600a , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Cristian Cuji, Jonathan Villarreal, Diseño y Evaluación de un Sistema Fotovoltaico Aislado para Iluminación en Vías Rurales y Carga de Vehículos Eléctricos Basado En Un Enfoque Multipropósito , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Análisis y Caracterización de la Calidad de Energía utilizando Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Flavio Villacrés, Alexis Torres, Marlo Chamba, Carlos Lozada, Estrategia Adaptativa para el Alivio de Carga en Sistemas Eléctricos de Potencia Basada en Regresión Lineal , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Los sistemas piezoeléctricos han tomado relevancia al momento de explorar nuevos métodos de generación de energía. La deformación mecánica que se produce en un transductor piezoeléctrico al aplicar una fuerza sobre éste origina cierta cantidad de energía que puede emplearse para transformar la fuerza que ejerce una persona mediante una pisada en energía eléctrica. La eficiencia en la conversión mecánica-eléctrica del material piezoeléctrico puede reducir la dependencia de fuentes tradicionales. Sin embargo, la falta de un modelo específico limita la aplicación práctica en almacenamiento energético, aunque existen modelos teóricos su validación con modelos prácticos es casi nula. Este documento busca simular el funcionamiento del transductor piezoeléctrico PZT-51 a través de su modelo eléctrico tomando en consideración las características mecánicas, en aplicaciones de almacenamiento de energía. Para la validación del modelo generado en Simulink® se emplearon parámetros como la permitividad dieléctrica, el coeficiente piezoeléctrico y el factor de pérdida, proporcionados por el fabricante para garantizar que los resultados obtenidos se asemejan a la realidad.
Visitas del artículo 7 | Visitas PDF 1
Descargas
- [1] Z. Leí, B. X. Tian y Q. Feng. “Recolección de energía piezoeléctrica a partir de la marcha humana mediante un mecanismo de amplificación de dos etapas”. ScienceDirect. Accedido el 14 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/abs/pii/S0360544219318353
- [2] B. Zubair, P. Riffat Asim y Q. Faisal. “Generación de energía eléctrica utilizando material piezoeléctrico de titanato de circonato de plomo (PZT-5A) : Verificaciones analíticas, numéricas y experimentales”. Home page. Accedido el 28 de marzo de 2025. [En línea]. Disponible: https://iris.uniroma1.it/bitstream/11573/1019687/1/Elahi_Generation_2016.pdf
- [3] M. Farnsworth, A. Tiwari y R. Dorey. “Modelización, simulación y optimización de un recolector de energía piezoeléctrica”. ScienceDirect. Accedido el 9 de abril de 2025. [En línea]. Disponible: https://www.sciencedirect.com/science/article/pii/S2212827114009718
- [4] A. Kevin and S. Ordoñeez, “Modelo de circuito equivalente Butterworth Van Dyke para transductores piezoeléctricos,” CD 12360, Documento técnico interno, 24 de agosto de 2022.
- [5] J. Ibáñez García, E-STEP: Generador piezoeléctrico. Aplicación a escaleras, Proyecto Final de Carrera, Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona, Universitat Politècnica de Catalunya, 2012.
- [6] A. Menéndez Melé y A. Arribalzaga Jové. “Desarrollo de un prototipo de baldosa generadora de energía eléctrica a partir de la piezoelectricidad y almacenamiento de la energia producida”. UPCommons :: Inici. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://upcommons.upc.edu/server/api/core/bitstreams/b3c5ad59-ae56-4cb6-9792-f5930bab4eaf/content
- [7] J. Cardenas Ramirez. “Configuración, material y eficiencia de sistemas piezoeléctricos para la generación de energía eléctrica”. repositorio.ucv. Accedido el 18 de octubre de 2025. [En línea]. Disponible: https://repositorio.ucv.edu.pe/bitstream/handle/20.500.12692/107176/Cardenas_RJ-SD.pdf?sequence=1&isAllowed=y
- [8] N. Martínez, “Energía piezoeléctrica: Aprovechando el movimiento humano para generar electricidad,” Renovables Verdes, [En línea]. Disponible: https://www.renovablesverdes.com/energia-piezoelectrica-convierte-movimiento-humano-en-electricidad/
- [9] M. A. Salazar Lozano, L. G. Butzmann Álvarez, O. A. García Cano y M. Parra Escobedo, “Walking Energy: Generador de energía por pisada,” Tecnológico Nacional de México/Instituto Tecnológico de Durango, México, 2024. [En línea]. Disponible: https://www.eumed.net/uploads/articulos/e9f1501a443fc2252f99b6e9dce62c8a.pdf
- [10] M. Martínez Euklidiadas, “Piezoelectricidad: usando las pisadas de los ciudadanos para generar energía,” Tomorrow.City, 16 de noviembre de 2020. [En línea]. Disponible: https://www.tomorrow.city/es/piezoelectricidad-generar-energia-con-movimiento/
- [11] Starner, T., & Paradiso, J. A. (2004). Human generated power for mobile electronics. Low-power electronics design, 45, 1-35.








