Skip to main navigation menu Skip to main content Skip to site footer

Parametric Identification of the Oscillatory Component Load Model Using Synchrophasor Measurements and Optimization Techniques

Identificación Paramétrica del Modelo de Carga OCL Utilizando Mediciones Sincrofasoriales y Técnicas de Optimización




Section
SISTEMAS ELÉCTRICOS DE POTENCIA

How to Cite
Parametric Identification of the Oscillatory Component Load Model Using Synchrophasor Measurements and Optimization Techniques. (2026). Revista Técnica "energía", 22(2), PP. 75-84. https://doi.org/10.37116/revistaenergia.v22.n2.2026.736

Dimensions
PlumX

How to Cite

Parametric Identification of the Oscillatory Component Load Model Using Synchrophasor Measurements and Optimization Techniques. (2026). Revista Técnica "energía", 22(2), PP. 75-84. https://doi.org/10.37116/revistaenergia.v22.n2.2026.736

Download Citation

Joffre Constante
Lesly Ochoa
Brayan Caiza
Walter Rueda
Omar Chuquitarco

Similar Articles

1-10 of 486

You may also start an advanced similarity search for this article.

Currently, accurately modeling loads, representing their dynamic behavior, and capturing variations in load model parameters over time is a fundamental issue. To this end, synchrophasor measurements, automatic and online load modeling methodologies, and new dynamic load models are used today. Recently, a research project has proposed the Oscillatory Component Load (OCL) model, which has the advantage of representing not only the static and exponential recovery behavior of loads, but also their oscillatory behavior. In this regard, the parametric identification process of this OCL model has not been investigated in depth, therefore this work does so, from determining the best optimization method for the parametric identification process to determining the characteristics that synchrophasor measurements must contain to obtain accurate OCL models.


Article visits 9 | PDF visits 6


Downloads

Download data is not yet available.
  1. The NERC Model Validation Task Force of the Transmission Issues Subcommittee, “Power System Model Validation, A White Paper by the NERC Model Validation Task Force of the Transmission Issues Subcommittee,” North American Electric Reliability Corporation, no. December, pp. 1–53, 2010.
  2. M. Mohammed, A. Abdulkarim, A. S. Abubakar, A. B. Kunya, and Y. Jibril, “Load modeling techniques in distribution networks: a review,” Journal of Applied Materials and Technology, vol. 1, no. 2, pp. 63–70, 2020.
  3. A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling - A review,” IEEE Trans Smart Grid, vol. 9, no. 6, pp. 5986–5999, 2018, doi: 10.1109/TSG.2017.2700436.
  4. D. N. Kosterev, C. W. Taylor, and W. A. Mittelstadt, “Model validation for the august 10,1996 wscc system outage,” IEEE Transactions on Power Systems, vol. 14, no. 3, pp. 967–979, 1999, doi: 10.1109/59.780909.
  5. NERC, “Dynamic Load Modeling, Technical Reference Document,” 2016.
  6. “IEEE Standard for Synchrophasor Measurements for Power Systems,” 2011. doi: 10.1109/IEEESTD.2011.6111219.
  7. C. W. G. C4.605, “Modelling and Aggregation of Loads in Flexible Power Networks,” 2014.
  8. Y. Zhu, “Power System Loads and Power System Stability,” Springer Theses, 2020. doi: 10.1007/978-3-030-37786-1.
  9. E. S. N. Raju P., A. Nechifor, M. M. Albu, J. Yu, and V. Terzija, “Development and Validation of a New Oscillatory Component Load Model for Real-time Estimation of Dynamic Load Model Parameters,” IEEE Transactions on Power Delivery, vol. PP, no. c, pp. 1–1, 2019, doi: 10.1109/tpwrd.2019.2918059.
  10. J. R. Constante and D. G. Colome, “Estimación Paramétrica del Modelo de Carga ZIP basada en Técnicas de Optimización y en Mediciones de PMU,” 2022 IEEE Biennial Congress of Argentina (ARGENCON), San Juan, Argentina, pp. 1–8, 2022, doi: 10.1109/ARGENCON55245.2022.9940010.
  11. M. Brown, M. Biswal, S. Brahma, S. J. Ranade, and H. Cao, “Characterizing and quantifying noise in PMU data,” 2016 IEEE Power and Energy Society General Meeting, vol. 2016, no. 2019–07, pp. 1–5, 2016, doi: 10.1109/PESGM.2016.7741972.
  12. J. R. Constante Segura, G. Colome, and D. Echeverria, “Noise Amplitude in Ambient PMU Data and its Impact on Load Models Identification,” IEEE Latin America Transactions, vol. 22, no. 8, pp. 678–685, 2024, doi: 10.1109/TLA.2024.10620390.
  13. J. R. Constante and G. Colomé, “Estado del Arte y Tendencias en el Modelamiento de Carga,” Revista Técnica “energía,” vol. 18, no. 2, pp. 1–12, 2022, doi: 10.37116/revistaenergia.v18.n2.2022.475.
  14. S. S. Rao, Engineering optimization: Theory and practice. John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2020.
Sistema OJS 3.4.0.9