Data Mining and Short-Term Projection of Power Demand in the Ecuadorian Electric System
Main Article Content
Abstract
This article presents a computational tool developed in the Python programming language for data mining and short-term projection of the electrical power demand of the National Interconnected System (SNI), using the predictive approach of the Random Forest machine learning algorithm.
The implementation of the Hyperopt function to define the main hyperparameters of the Random Forest algorithm together with the application of feature engineering allows to fit a suitable machine learning model for the data series. This algorithm is implemented in tasks to mitigate missing values and outliers to structure complete databases free of deviations.
The procedure for data mining and demand projection shows the reliability and versatility of using the computational tool, obtaining relevant results, such as the reduction of anomalies in the data series to improve the precision in the projected electrical demand curves.
Downloads
Article Details
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
References
[2] S. Jurado, À. Nebot, F. Mugica, and N. Avellana, “Hybrid methodologies for electricity load forecasting: Entropy-Based Feature Selection with Machine Learning and Soft Computing Techniques,” ENERGY, vol. 86, pp. 276–291, Jun. 2015.
[3] K. Berk, Modeling and Forecasting Electricity Demand A Risk Management Perspective. Germany: Springer, 2015.
[4] V. Hinojosa, “Pronóstico de Demanda de Corto Plazo en Sistemas de Suministro de Energía Eléctrica utilizando Inteligencia Artificial,” Universidad Nacional de San Juan, Argentina, 2007.
[5] M. Jacob, C. Neves, and D. Vukadinović Greetham, “Short Term Load Forecasting,” in Forecasting and Assessing Risk of Individual Electricity Peaks. Mathematics of Planet Earth, Springer, 2019, pp. 15–37.
[6] Y. Liu, Python Machine Learning by Example, 2nd ed. Birmingham: Packt, 2017.
[7] L. Igual and S. Seguí, Introduction to Data Science: A Python Apporach to Concepts, Techniques and Applications. Switzerland: Springer, 2017.
[8] L. BREIMAN, “Random Forests,” Machine Learning, vol. 45, pp. 5–32, 2001.
[9] Medium, “A Trip to Random Forest.” Mar. 2018, Accessed: Jun. 28, 2020. [Online]. Available: https://medium.com/greyatom/a-trip-to-random-forest-5c30d8250d6a.
[10] Scikit Learn, “scikit-learn Machine Learninh in Python.” Jun. 28, 2020, Accessed: Jun. 28, 2020. [Online]. Available: https://scikit-learn.org/stable/index.html.
[11] M. Swamynathan, Mastering Machine Learning with Python in Six Steps: A practical Implementation Guide to Predictive Data Analytics Using Python. Bangalore: Apress, 2017.
[12] K. Brent, J. Bergstra, and C. Eliasmith, “Hyperopt-Sklearn,” in Automated Machine Learning: Methods, Systems, Challenges, Waterloo: Springer, 2019.
[13] A. O. Gallo, “Análisis predictivo para minería de datos y proyección de demanda a corto plazo de la demanda de potencia en el sistema eléctrico ecuatoriano”, Escuela Politécnica Nacional, Quito, Ecuador, Oct. 2020.
[14] G. Bontempi, S. Ben Taieb, and Y. Le borgne, “Machine learning strategies for time series forecasting,” Berlin Germany, Jul. 2012, vol. 138, pp. 62–77.