Determination of the optimum power point in photovoltaic panels using the Liu &Jordan model considering fuzzy variables

Main Article Content

Luis Tipán
https://orcid.org/0000-0001-5328-8755
David Fiallos
Manuel Jaramillo
https://orcid.org/0000-0002-1714-222X

Abstract




 



This document focuses on solar energy generation, specifically on the optimum point of power delivered by the photovoltaic panel. To reach the end of the study, it is necessary to develop a mathematical model, which must be followed sequentially; it is based initially on the solar model of Liu & Jordan, which allows a study of the amount of incident irradiance on an inclined surface. Followed by dirt as a diffuse variable, how it affects the panel. In addition, climatic variables such as temperature and humidity are considered, variables necessary to obtain the optimum power point. The proposed mathematical model aims to determine the inclination and orientation of the highest solar radiation capture on an inclined surface. Additionally, how to minimize losses due to dirt and climatic variables as they affect their impact on the efficiency of the panel. Finally, based on the aforementioned parameters, results are shown under three considerations: for the data obtained by the UPS meters, inclination and orientation obtained with a compass and inclinometer, the result calculated under the current conditions of the site and finally the calculation under optimum conditions, this determines the optimum power point.


 

Downloads

Download data is not yet available.

Article Details

How to Cite
Tipán , L. ., Fiallos, D., & Jaramillo, M. (2022). Determination of the optimum power point in photovoltaic panels using the Liu &Jordan model considering fuzzy variables. Revista Técnica "energía", 18(2), PP. 48–60. https://doi.org/10.37116/revistaenergia.v18.n2.2022.490
Section
EFICIENCIA ENERGÉTICA

References

[1] F. Li, N. Ma, J. Zhao, K. Qu, X. Yang, and Z. Chen, “Evaluating optimum tilt angle for PV modules using solar radiation models in Wuhan, China,” 9th Int. Conf. Power Electron. - ECCE Asia "Green World with Power Electron. ICPE 2015-ECCE Asia, pp. 2507–2512, 2015, doi: 10.1109/ICPE.2015.7168126.
[2] J. Constante Segura and E. Palacios Chacón, El Recurso Solar Para Generación De Energía. 2014.
[3] T. Khatib, A. Mohamed, and K. Sopian, “On the monthly optimum tilt angle of solar panel for five sites in Malaysia,” 2012 IEEE Int. Power Eng. Optim. Conf. PEOCO 2012 - Conf. Proc., no. June, pp. 7–10, 2012, doi: 10.1109/PEOCO.2012.6230827.
[4] Doris Adriana Alvares Lozano, “‘Evaluación de la orientación y el ángulo de inclinación óptimon de una superficie plana para maximizar la captaciónde irradiación solar en Cuenca-Ecuador,’” Universidad Politecnica Salesiana, 2017.
[5] M. J. Denegri, “ESTIMACIÓN DE LA IRRADIACIÓN GLOBAL HORARIA EN UNA SUPERFICIE INCLINADA Y CON DIFERENTES ORIENTACIONES EN LUJÁN,” J. Renew. Sustain. Energy, vol. 6, no. 5, p. 10, 2016, doi: 10.1063/1.4896956.
[6] I. Piccioli, A. Laguarda, and G. Abal, “Transporte De Irradiación Global Horizontal a Una Superficie Inclinada: Efecto De La Separación Directa-Difusa,” XII Congr. Iberoam. Energía Sol. Madrid, España, 20-22 junio 2018, vol. ©Asociació, pp. 785–792, 2018.
[7] C. Cui, Y. Zou, L. Wei, and Y. Wang, “Evaluating combination models of solar irradiance on inclined surfaces and forecasting photovoltaic power generation,” IET Smart Grid, vol. 2, no. 1, pp. 123–130, 2019, doi: 10.1049/iet-stg.2018.0110.
[8] P. Pangnaada and S. Chaitusaney, “Estimation of solar radiation on the tilted surfaces in Songkhla, Thailand,” 2016 13th Int. Conf. Electr. Eng. Comput. Telecommun. Inf. Technol. ECTI-CON 2016, no. 1, pp. 1–6, 2016, doi: 10.1109/ECTICon.2016.7561242.
[9] S. Kumar and V. Dave, “ANN based controller to mitigate soiling loss on solar panels,” Int. Conf. 21st Century Energy Needs - Mater. Syst. Appl. ICTFCEN 2016, pp. 1–6, 2017, doi: 10.1109/ICTFCEN.2016.8052723.
[10] O. P. LAMIGUEIRO, “ENERGÍA SOLAR Fotovoltaica,” História, Ciências, Saúde-Manguinhos, vol. 8, no. 3, pp. 779–781, 2001, doi: 10.1590/s0104-59702001000400018.
[11] A. G. Haddad and R. Dhaouadi, “Modeling and analysis of PV soiling and its effect on the transmittance of solar radiation,” 2018 Adv. Sci. Eng. Technol. Int. Conf. ASET 2018, pp. 1–5, 2018, doi: 10.1109/ICASET.2018.8376787.
[12] N. Barth, B. Figgis, A. A. Abdallah, S. P. Aly, and S. Ahzi, “Modeling of the Influence of Dust Soiling on Photovoltaic Panels for Desert Applications the Example of the Solar Test Facility at Doha, Qatar,” Proc. 2017 Int. Renew. Sustain. Energy Conf. IRSEC 2017, no. 1, pp. 1–6, 2018, doi: 10.1109/IRSEC.2017.8477249.
[13] H. Imran, Z. Maqsood, A. Ullah, and N. Z. Butt, “Effective Prediction of Transmission of Solar Irradiance through Dusty Solar Panels using Atmospheric Aerosol Data for Lahore, Pakistan,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 2889–2893, 2019, doi: 10.1109/PVSC40753.2019.8980728.
[14] D. Dahlioui et al., “Evaluation of losses in PV performances due to soiling effect in Rabat,” Proc. 2018 6th Int. Renew. Sustain. Energy Conf. IRSEC 2018, pp. 2–4, 2018, doi: 10.1109/IRSEC.2018.8702967.
[15] S. Toth, M. Hannigan, M. Vance, and M. Deceglie, “Enhanced Photovoltaic Soiling in An Urban Environment,” Conf. Rec. IEEE Photovolt. Spec. Conf., pp. 2904–2907, 2019, doi: 10.1109/PVSC40753.2019.8980735.
[16] K. Ilse, B. Figgis, M. Z. Khan, V. Naumann, and C. Hagendorf, “Dew as a Detrimental Influencing Factor for Soiling of PV Modules,” IEEE J. Photovoltaics, vol. 9, no. 1, pp. 287–294, 2019, doi: 10.1109/JPHOTOV.2018.2882649.
[17] M. Naser Reda, M. Spinnler, H. Al-Kayiem, and T. Sattelmayer, “Experimental investigation of temperature and condensation control of photovoltaic panels,” Proc. - 2019 6th Int. Conf. Electr. Electron. Eng. ICEEE 2019, pp. 312–316, 2019, doi: 10.1109/ICEEE2019.2019.00067.
[18] Y. Jiang, “Estimation of monthly mean hourly diffuse solar radiation,” WNWEC 2009 - 2009 World Non-Grid-Connected Wind Power Energy Conf., pp. 517–520, 2009, doi: 10.1109/WNWEC.2009.5335849.
[19] SIMAX, “SIMAX 156 SP672-280W-285W-290W-295W-300W-305W-310W High salt mist and ammonia resistance Leading Warranty in PV Industry SIMAX 156 SP672-280W-285W-290W-295W-300W-305W-310W.”
[20] CONELEC Consejo Nacional de Electricidad, “Atlas Solar Del Ecuador Con Fines De Generación Eléctrica,” Corporación para la Investig. Energética, 2008.
[21] L. Urdiales and J. L. Espinoza, Energia solar en el Ecuador, no. January. 2015.
[22] I. Tabet, K. Touafek, N. Bellel, N. Bouarroudj, A. Khelifa, and M. Adouane, “Optimization of angle of inclination of the hybrid photovoltaic-thermal solar collector using particle swarm optimization algorithm,” J. Renew. Sustain. Energy, vol. 6, no. 5, 2014, doi: 10.1063/1.4896956.
[23] M. C. Rodil, J. P. Montenegro, K. Kampouropoulos, F. Andrade, and L. Romeral, “A Novel Methodology for Determination of Soiling on PV Panels by Means of Grey Box Modelling,” IECON Proc. (Industrial Electron. Conf., vol. 2019-Octob, pp. 2271–2276, 2019, doi: 10.1109/IECON.2019.8927584.
[24] A. Baras, R. K. Jones, A. Alqahtani, M. Alodan, and K. Abdullah, “Measured soiling loss and its economic impact for PV plants in central Saudi Arabia,” 2016 Saudi Arab. Smart Grid Conf. SASG 2016, pp. 1–7, 2017, doi: 10.1109/SASG.2016.7849657.
[25] B. L. and A. B. Samira Belihi, Dounia Dahlioui, “On the Use of Dew for Cleaning PV Panels in Morocco Literature,” vol. 6, no. 52, pp. 1–2, 2011.
[26] S. C. Collaguazo, “ESTIMACIÓN DE IRRADIANCIA SOLAR BASADA EN MODELOS MATEMÁTICOS Y MEDICIÓN DE VARIABLES ELÉCTRICAS DE PANELES FOTOVOLTAICOS,” 2019.
[27] A. Molina and F. Martinez, “Generación fotovoltaica,” p. 13, 2017.
[28] M. A. G. Pujos, “DISEÑO Y CONSTRUCCIÓN DE UN SISTEMA FOTOVOLTAICO DE BAJA POTENCIA EN EL SECTOR RIO BLANCO PERTENECIENTE A LA COMUNIDAD YATZAPUTZAN Autor:,” no. 1, p. 43, 2017, doi: 10.1017/CBO9781107415324.004.
[29] E. J. Salazar, “PANELES FOTOVOLTAICOS EN PARQUES SOLARES,” 2019.
[30] M. H. I. Andrés, “DISEÑO DE UNA INSTALACION FOTOVOLTAICA OPTIMIZANDO EL ANGULO DE INCLINACION DE LOS PANELES SOLARES,” UNIVERSIDAD CATOLICA DE SANTIAGO DE GUAYAQUIL, 2015.
[31] B. Y. H. Liu and R. C. Jordan, “The interrelationship and characteristic distribution of direct, diffuse and total solar radiation,” Sol. Energy, vol. 4, no. 3, pp. 1–19, 1960, doi: 10.1016/0038-092X(60)90062-1.
[32] C. M. E. Rey, “GUIA METODOLOGICA PARA LA IMPLEMENTACION DE SISTEMAS FOTOVOLTAICOS A PEQUEÑA ESCALA EN COLOMBIA Desarrollado,” 2017.
[33] H. C. P. Oehninger, “ANÁLISIS Y SISTEMATIZACIÓN DE DATOS PARA EL DISEÑO DE SISTEMAS SOLARES TÉRMICOS EN CHILE,” 2007.

Similar Articles

<< < 1 2 

You may also start an advanced similarity search for this article.