Numerical analysis by CFD for the forced boiling process with isobutane circulating through square tubes
Main Article Content
Abstract
The purpose of this investigation is to compare the development of the boiling phenomenon in an analytical and numerical way, by means of the heat transfer coefficient for two phases and the steam quality with the R600a refrigerant, inside a square steel tube up to 3 cm side, the simulation is carried out using a software for computational fluid dynamics (fluid ANSYS). Finding an increase in steam quality for high calorie flow and low thickness. Finally, it finds the maximum phase change by boiling for flow of 400 kg/m²·s, heat of 20,000 W/m², with 88% steam for the central point in the exit edge condition.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
References
[2] A. Diani, S. Mancin, A. Cavallini, and L. Rossetto, “Experimental investigation of R1234ze ( E ) flow boiling inside a 2 . 4 mm ID horizontal microfin tube Étude expérimentale de l ’ ébullition en écoulement de R1234ze ( E ) à l ’ intérieur d ’ un tube horizontal à micro-ailettes de diamètre intérieur de 2 ,” Int. J. Refrig., vol. 69, pp. 272–284, 2016, doi: 10.1016/j.ijrefrig.2016.06.014.
[3] Z. Yang, M. Gong, G. Chen, X. Zou, and J. Shen, “Two-phase flow patterns, heat transfer and pressure drop characteristics of R600a during flow boiling inside a horizontal tube,” Appl. Therm. Eng., vol. 120, pp. 654–671, 2017, doi: 10.1016/j.applthermaleng.2017.03.124.
[4] X. R. Zhuang, M. Q. Gong, X. Zou, G. F. Chen, and J. F. Wu, “Experimental investigation on flow condensation heat transfer and pressure drop of R170 in a horizontal tube,” Int. J. Refrig., vol. 66, pp. 105–120, 2016, doi: 10.1016/j.ijrefrig.2016.02.010.
[5] K. Sariibrahimoglu, H. Kizil, M. F. Aksit, I. Efeoglu, and H. Kerpicci, “Effect of R600a on tribological behavior of sintered steel under starved lubrication,” Tribol. Int., vol. 43, no. 5–6, pp. 1054–1058, 2010, doi: 10.1016/j.triboint.2009.12.035.
[6] K. S. Kumar and K. Rajagopal, “Computational and experimental investigation of low ODP and low GWP HCFC-123 and HC-290 refrigerant mixture alternate to CFC-12,” Energy Convers. Manag., vol. 48, no. 12, pp. 3053–3062, 2007, doi: 10.1016/j.enconman.2007.05.021.
[7] H. Kruse, “The state of the art of the hydrocarbon technology in household refrigeration,” in Proc. of the int. conferences on ozone protection technologies, Washington, DC, 1996, pp. 179--188.
[8] C. L. Ong and J. R. Thome, “Macro-to-microchannel transition in two-phase flow: Part 2 - Flow boiling heat transfer and critical heat flux,” Exp. Therm. Fluid Sci., vol. 35, no. 6, pp. 873–886, 2011, doi: 10.1016/j.expthermflusci.2010.12.003.
[9] M. M. Sarafraz and F. Hormozi, “Scale formation and subcooled flow boiling heat transfer of CuO-water nanofluid inside the vertical annulus,” Exp. Therm. Fluid Sci., vol. 52, pp. 205–214, 2014, doi: 10.1016/j.expthermflusci.2013.09.012.
[10] J. B. Copetti, M. H. MacAgnan, and F. Zinani, “Experimental study on R-600a boiling in 2.6 mm tube,” Int. J. Refrig., vol. 36, no. 2, pp. 325–334, 2013, doi: 10.1016/j.ijrefrig.2012.09.007.
[11] M. Magnini and J. R. Thome, “A CFD study of the parameters influencing heat transfer in microchannel slug flow boiling,” Int. J. Therm. Sci., vol. 110, pp. 119–136, 2016, doi: 10.1016/j.ijthermalsci.2016.06.032.
[12] Q. Liu, W. Wang, and B. Palm, “A numerical study of the transition from slug to annular flow in micro-channel convective boiling,” Appl. Therm. Eng., vol. 112, pp. 73–81, 2017, doi: 10.1016/j.applthermaleng.2016.10.020.
[13] A. Ferrari, M. Magnini, and J. R. Thome, “Numerical analysis of slug flow boiling in square microchannels,” Int. J. Heat Mass Transf., vol. 123, pp. 928–944, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.03.012.
[14] M. Wörner, “Numerical modeling of multiphase flows in microfluidics and micro process engineering: A review of methods and applications,” Microfluid. Nanofluidics, vol. 12, no. 6, pp. 841–886, 2012, doi: 10.1007/s10404-012-0940-8.
[15] S. Szczukiewicz, M. Magnini, and J. R. Thome, “Proposed models, ongoing experiments, and latest numerical simulations of microchannel two-phase flow boiling,” Int. J. Multiph. Flow, vol. 59, pp. 84–101, 2014, doi: 10.1016/j.ijmultiphaseflow.2013.10.014.
[16] H. Wang, Z. Pan, and S. V. Garimella, “Numerical investigation of heat and mass transfer from an evaporating meniscus in a heated open groove,” Int. J. Heat Mass Transf., vol. 54, no. 13–14, pp. 3015–3023, 2011, doi: 10.1016/j.ijheatmasstransfer.2011.02.047.
[17] Z. Pan and H. Wang, “Bénard-Marangoni instability on evaporating menisci in capillary channels,” Int. J. Heat Mass Transf., vol. 63, pp. 239–248, 2013, doi: 10.1016/j.ijheatmasstransfer.2013.03.082.
[18] M. H. Yuan, Y. H. Yang, T. S. Li, and Z. H. Hu, “Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking method,” Int. J. Heat Mass Transf., vol. 51, no. 7–8, pp. 1646–1657, 2008, doi: 10.1016/j.ijheatmasstransfer.2007.07.037.
[19] R. Zhuan and W. Wang, “Flow pattern of boiling in micro-channel by numerical simulation,” Int. J. Heat Mass Transf., vol. 55, no. 5–6, pp. 1741–1753, 2012, doi: 10.1016/j.ijheatmasstransfer.2011.11.029.
[20] EES, “EES: Engineering Equation Solver.” 2020, [Online]. Available: http://fchartsoftware.com/.
[21] I. Honeywell International, “Genetron Properties.” 2020.
[22] L. F. Toapanta Ramos, G. A. Bohórquez Peñafiel, L. E. Caiza Vivas, and W. Quitiaquez Sarzosa, “Análisis numérico de los perfiles de velocidad de un flujo de agua a través de una tubería con reducción gradual,” Enfoque UTE, vol. 9, no. 3, pp. 80–92, 2018, doi: 10.29019/enfoqueute.v9n3.290.
[23] N. Kurul and M. Z. Podowski, Multidimensional effects in forced convection subcooled boiling. International Heat Transfer Conference Digital Library, 1990.