Forecasting Models of Solar Radiation and Air Temperature through Recurrent Neural Network

Main Article Content

Manuel Cuesta
https://orcid.org/0000-0001-8525-1949
Jessica Constante
https://orcid.org/0000-0003-2123-8432
Diego Jijón
https://orcid.org/0000-0001-7013-423X

Abstract

The aim of this study is to compare two architectures of recurrent neural networks of Elman and Jordan (RNRE and RNRJ), focus on the forecasting for two days of solar radiation and air temperature. The inputs of the forecasting model are meteorological variables as wind speed, atmospheric pressure, relative humidity and precipitation. The Research Institute for Geology and Energy of Ecuador provided the data of three meteorological stations situated in the provinces of Pichincha and Tungurahua for neural network training, validation and forecasting stages. Each network was trained with three different learning functions: backpropagation, backpropagation momentum and resilient propagation. The results shows the statistical parameters, Person correlation, mean square error and forecasting behavior on graphics for air temperature and solar radiation, according to RNRE and RNRJ model. This work shows correlation index greater than 0,9 in the validation stage. In the forecasting stage, the correlation index is higher than 0,8 and the mean square error shows values less than 0,02 kW for solar radiation and 2 ºC for air temperature.

Downloads

Download data is not yet available.

Article Details

How to Cite
Cuesta, M., Constante, J., & Jijón, D. (2023). Forecasting Models of Solar Radiation and Air Temperature through Recurrent Neural Network. Revista Técnica "energía", 19(2), PP. 81–89. https://doi.org/10.37116/revistaenergia.v19.n2.2023.552
Section
EFICIENCIA ENERGÉTICA

References

H. Sharadga, S. Hajimirza, and R. S. Balog, “Time series forecasting of solar power generation for large-scale photovoltaic plants,” Renew. Energy, vol. 150, pp. 797–807, 2020, doi: 10.1016/j.renene.2019.12.131.

A. Alzahrani, P. Shamsi, C. Dagli, and M. Ferdowsi, “Solar Irradiance Forecasting Using Deep Neural Networks,” in Procedia Computer Science, 2017, vol. 114, pp. 304–313, doi: 10.1016/j.procs.2017.09.045.

G. Mahalakshmi, S. Sridevi, and S. Rajaram, “A Survey on Forecasting of Time Series Data,” p. 8, 2016.

V. O. Nur Laily, B. Warsito, and D. A. I Maruddani, “Comparison of ARCH / GARCH model and Elman Recurrent Neural Network on data return of closing price stock,” J. Phys. Conf. Ser., vol. 1025, no. 1, 2018, doi: 10.1088/1742-6596/1025/1/012103.

M. Bettiza, “An Analysis on Wind Speed Forecasting Result with the Elman Recurrent Neural Network Method,” E3S Web Conf., vol. 324, p. 4, 2021, doi: 10.1051/e3sconf/202132405002.

A. A. Fierro, “Predicción de Series Temporales con Redes Neuronales,” Fac. Informática Univ. Nac. La Plata Argentina, p. 64, 2020.

W. M. Septiawan and S. N. Endah, “Suitable Recurrent Neural Network for Air Quality Prediction with Backpropagation Through Time,” 2018 2nd Int. Conf. Informatics Comput. Sci. ICICoS 2018, pp. 196–201, 2018, doi: 10.1109/ICICOS.2018.8621720.

T. E. Putri, A. A. Firdaus, and W. I. Sabilla, “Short-Term Forecasting of Electricity Consumption Revenue on Java-Bali Electricity System using Jordan Recurrent Neural Network,” J. Inf. Syst. Eng. Bus. Intell., vol. 4, no. 2, p. 96, 2018, doi: 10.20473/jisebi.4.2.96-105.

J.Durán, “Redes Neuronales Convolucionales en R Reconocimiento de caracteres escritos a mano,” p. 78, 2018, [Online]. Available: http://bibing.us.es/proyectos/abreproy/91338/fichero/TFG+Jaime+Durán+Suárez.pdf.

D. D. Cervantes, “Estudio De Las Emisiones De Nox Mediante Redes Neuronales Recurrentes,” 2020.

M. Cabezón, “Implementación de redes neuronales recurrentes en Python . Miguel Cabezón Manchado Trabajo de fin de máster en Ingeniería Matemática,” p. 43, 2018, [Online]. Available: https://eprints.ucm.es/49444/1/2018-MIGUEL CABEZON Memoria.pdf.

F. Rodríguez, A. Fleetwood, A. Galarza, and L. Fontán, “Predicting solar energy generation through artificial neural networks using weather forecasts for microgrid control,” Renew. Energy, vol. 126, pp. 855–864, 2018, doi: 10.1016/j.renene.2018.03.070.

B. Kamanditya and B. Kusumoputro, “Elman Recurrent Neural Networks Based Direct Inverse Control for Quadrotor Attitude and Altitude Control,” in Proceedings of International Conference on Intelligent Engineering and Management, ICIEM 2020, 2020, pp. 39–43, doi: 10.1109/ICIEM48762.2020.9160191.

C. Arana, “Redes Neuronales Recurrentes: Análisis De Los Modelos Especializados En Datos Secuenciales,” Univ. del Cema, no. 797, pp. 4–8, 2021, [Online]. Available: https://ucema.edu.ar/publicaciones/download/documentos/797.pdf.

S. Alemany, J. Beltran, A. Perez, and S. Ganzfried, “Predicting hurricane trajectories using a recurrent neural network,” 33rd AAAI Conf. Artif. Intell. AAAI 2019, 31st Innov. Appl. Artif. Intell. Conf. IAAI 2019 9th AAAI Symp. Educ. Adv. Artif. Intell. EAAI 2019, pp. 468–475, 2019, doi: 10.1609/aaai.v33i01.3301468.

M. M. Rahman et al., “Prospective methodologies in hybrid renewable energy systems for energy prediction using artificial neural networks,” Sustain., vol. 13, no. 4, pp. 1–28, 2021, doi: 10.3390/su13042393.

M. Abreu and L. Villas, Minería de datos para Series Temporales, no. August. Universidad Central “Martha Abreu” de las Villas, 2015.

M. Christoph Bergmeir, “Neural networks using the stuttgart neural network simulator (SNNS),” pp. 1–74, 2021, [Online]. Available: https://github.com/cbergmeir/RSNNS/issues.

E. Andrade, “Estudio de los principales tipos de redes neuronales y las herramientas para su aplicación,” p. 152, 2013, [Online]. Available: http://dspace.ups.edu.ec/handle/123456789/4098.

A.Zell et al., “Stuttgart Neural Network Simulator SNNS,” Univ. Tübingen, pp. 1–350, 2016, [Online]. Available: papers2://publication/uuid/1C682FBB-1EEB-4D5E-AB83-EE9F7D055829.

D. M. Polo, L. P. Caballero, and E. M. Gómez, “Comparación de Redes Neuronales aplicadas a la predicción de Series de Tiempo,” Prospectiva, vol. 13, no. 2, pp. 88–95, 2015.

J. A. Cárdenas Garro, “‘Pronósticos Y Comparación De Una Serie De Tiempo Con Cambios Estructurales Mediante La Red Neuronal Artificial De Retropropagación Resiliente Y Modelos No Lineales,’” Univ. Nac. Mayor San Marcos - Fac. Ciencias Mat. Esc. Prof. Estadística, 2015.

M. De Liu, L. Ding, and Y. L. Bai, “Application of hybrid model based on empirical mode decomposition, novel recurrent neural networks and the ARIMA to wind speed prediction,” Energy Convers. Manag., vol. 233, p. 113917, 2021, doi: 10.1016/j.enconman.2021.113917.

L. Hardinata, B. Warsito, and Suparti, “Bankruptcy prediction based on financial ratios using Jordan Recurrent Neural Networks: A case study in Polish companies,” J. Phys. Conf. Ser., vol. 1025, no. 1, 2018, doi: 10.1088/1742-6596/1025/1/012098.

A. F. Romero Granda, “Predicción de la potencia activa a corto plazo de un parque fotovoltaico utilizando una red neuronal artificial,” ESCUELA POLITÉCNICA NACIONAL, 2017.

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.