Study of Steam Generation and Distribution in a Hospital to Improve Energy Efficiency Using Thermography, Ultrasound, and Gas Analyzer

Main Article Content

Alex Rivera
William Quitiaquez
Isaac Simbaña
Patricio Quitiaquez

Abstract

This investigation analyzed the energy efficiency of a steam system in a hospital, considering the procedure in ASME EA-3-2009 standard. The obtained boiler energy efficiency was 80.29 %, by applying an energy balance, reaching 15.33 kW for heat losses in the distribution pipes. Two consistent improvement alternatives were proposed, starting by unifying the pipe diameter of the kitchen area of 5 m, generating a reduction of heat loss from 828 to 600 W, which represented a total annual energy saving of around 2.4 GJ/year. The investment cost is USD 47.40, considering the achievement of the break-even point after 9 months, where the insulation of the pipes with glass wool was considered second and it generated a reduction in losses of 5.98 kW, representing a total annual energy saving of about 62.91 GJ/year, which corresponds to approximately USD 1,672. The investment for pipe insulation with a length of 49 m was USD 462, considering the NPV calculation and the possible savings, and the break-even point was reached after approximately 4 months, indicating the economic benefit of applying the two improvement options proposed.

Downloads

Download data is not yet available.

Article Details

How to Cite
Rivera, A., Quitiaquez, W., Simbaña, I., & Quitiaquez, P. (2024). Study of Steam Generation and Distribution in a Hospital to Improve Energy Efficiency Using Thermography, Ultrasound, and Gas Analyzer. Revista Técnica "energía", 20(2), PP. 72–80. https://doi.org/10.37116/revistaenergia.v20.n2.2024.601
Section
EFICIENCIA ENERGÉTICA

References

O. Tito-Andrade, “Evaluación de la caldera pirotubular de 150 BHP en la industria lechera FLORALP S.A.,” pp. 9–25, 2021.

J. L. Palacios, A. Peña, and V. Hidalgo, “Técnicas de Gestión Energética en Sistemas de Vapor,” Revista Politécnica Nacional, vol. 35, no. 3, p. 9, 2015.

Hernández, E. Uso de ultrasonidos para mejorar la eficiencia energética. México, D.F.: UE Systems. 2022.

Y. Nandanwar, P. Walke, V. Kalbande, and M. Mohan, “Performance improvement of vapour compression refrigeration system using phase change material and thermoelectric generator,” International Journal of Thermofluids, vol. 18, no. April, p. 100352, 2023, doi: 10.1016/j.ijft.2023.100352.

P. Mendrela, W. Stanek, and T. Simla, “Thermo-ecological cost – System evaluation of energy-ecological efficiency of hydrogen production from renewable and non-renewable energy resources,” Int J Hydrogen Energy, Jul. 2023, doi: 10.1016/J.IJHYDENE.2023.06.150.

C. F. Ocaña-Sánchez, J. M. Mariño-Salguero, and B. Bochtler, “Energy efficiency analysis of the steam distribution system of a hospital,” ÑAWPAY Revista Técnica Tecnológica, vol. 2, no. 1, pp. 23–30, 2020, doi: 10.36500/nrtt-v2.n1.2020.04.

R. Caetano-Barbieri, J. C. Costa-Campos, R. Fernandes Brito, A. Marcos Siqueira, L. J. Minette, and E. J. Acevedo, “Análisis de la Eficiencia Energética de una Caldera Industrial Alimentada por Leña,” Research, Society and Development, vol. 9, no. 1, pp. 1–20, 2019.

A. Pérez-Sánchez, Y. Reyes-Betancourt, R. González-De la Cruz, Y. B. Rodríguez-Guerra, and N. Liaño Abascal, “Evaluación del sistema de generación y distribución de vapor de una empresa cárnica,” Scientia et Technica, vol. 26, no. 1, pp. 82–97, 2021, doi: 10.22517/23447214.24495.

M. D. Ibrahim, S. A. Najamudin, and S. S. Lam, “Steam System Optimization at Palm Oil Mill: Case Study in Sabah, Malaysia,” Journal of Optimization in Industrial Engineering, vol. 15, no. 2, pp. 87–97, 2022, doi: 10.22094/joie.2022.1951662.1935.

Y. Santana Delgado, R. Jiménez Borges, and M. J. Lapido Rodríguez, “Eficiencia energética en el uso del vapor para la cocción de alimentos,” El Hombre y la Máquina, vol. 48, no. 0121–0777, pp. 29–36, 2017. https://www.redalyc.org/articulo.oa?id=4784

Y. Retirado-Mediaceja et al., “Análisis termoenergético del sistema de generación de vapor de una central térmica de 49 MW,” Enfoque UTE, vol. 11, no. 3, pp. 87–101, 2020, doi: 10.29019/enfoqueute.v11n3.653.

R. Suntivarakorn and W. Treedet, “Improvement of Boiler’s Efficiency Using Heat Recovery and Automatic Combustion Control System,” Energy Procedia, vol. 100, pp. 193–197, 2016, doi: 10.1016/j.egypro.2016.10.164.

O. Erbas, “Investigation of factors affecting thermal performance in a coal-fired boiler and determination of thermal losses by energy balance method,” Case Studies in Thermal Engineering, vol. 26, no. 101047, pp. 1–11, 2021, doi: 10.1016/j.csite.2021.101047.

M. Sagaf, S. Alim, C. Wibisono, and A. Muzakki, “Predicting Boiler Efficiency Deterioration using Energy Balance Method: Case Study in 660 Mw Power Plant Jepara, Central Java, Indonesia,” Journal of Thermal Engineering, vol. 6, no. 12, pp. 247–256, 2020, doi: 10.18186/THERMAL.821052.

INAMHI, “Boletín Climatológico Anual,” 2022. www.inamhi.gob.ec/boletines-meteorologicos

The American Society of Mechanical Engineers, “Energy Assessment for Steam Systems,” 2009

V. Rueda, “Auditoría energética a un bloque de aulas en Quito, Ecuador como estrategia de reducción de emisiones de CO2,” Revista Técnica “energía,” vol. 18, no. 2, pp. 38–47, Jan. 2022, doi: 10.37116/REVISTAENERGIA.V18.N2.2022.477.

W. J. Platzer, “Energy performance assessment method,” 1999.

I. Simbaña, W. Quitiaquez, J. Estupiñán, F. Toapanta-Ramos, and L. Ramírez, “Evaluación del rendimiento de una bomba de calor de expansión directa asistida por energía solar mediante simulación numérica del proceso de estrangulamiento en el dispositivo de

expansión,” Revista Técnica “energía,”

vol. 19, no. 1, pp. 110–119, Jul. 2022, doi: 10.37116/revistaenergia.v19.n1.2022.524.

UNINET, “Normas Oficiales Mexicanas ENER,” 1995

Y. Cengel and A. Ghajar, Heat and mass Transfer, vol. 13, no. 1. 2014.

R. Saidur, J. U. Ahamed, and H. H. Masjuki, “Energy, exergy and economic analysis of industrial boilers,” Energy Policy, vol. 38, no. 5, pp. 2188–2197, May 2010, doi: 10.1016/J.ENPOL.2009.11.087.

Y. Retirado-Mediaceja, Y. Camaraza-Medina, A. A. Sánchez-Escalona, H. L. Laurencio-Alfonso, M. F. Salazar-Corrales, and C. Zalazar-Oliva, “Thermo-exergetic assessment of the steam boilers used in a cuban thermoelectric facility,” International Journal of Design and Nature and Ecodynamics, vol. 15, no. 3, pp. 291–298, 2020, doi: 10.18280/ijdne.150302.

ASTM International, C552-17e1 Standard Specification for cellular glass. 2017.

ASTM International, C1696-20 Standard guide for industrial thermal insulation systems. 2020.

Ministerio de Desarrollo Urbano y Vivienda (MIDUVI), “NEC Norma Ecuatoriana de la Construcción,” Miduvi, p. pp 1-48, 2018.

Most read articles by the same author(s)