Impact Analysis of Non-Dispatchable Renewable Energies Penetration in Power System Operational Security
Main Article Content
Abstract
This study analyzes the impact of integrating non-dispatchable renewable energy generators into the National Interconnected System (SNI), focusing on the Yanahurcu wind project, which aims to add 52.8 MW of renewable generation to the system. To achieve this, a systematic methodology is proposed, consisting of three sequential and complementary types of analysis. First, a probabilistic power flow analysis is applied to assess the project's ability to contribute energy to the system under various operating conditions. Then, its impact on dynamic security is evaluated through time-domain simulations, considering its reactive power contribution during grid faults. Additionally, a generation adequacy assessment is performed, including key indicators such as the Loss of Load Probability (LOLP) and Expected Energy Not Supplied (EENS), which are essential to determine the system’s capacity to meet demand given the integration of non-dispatchable generation blocks. DIgSILENT PowerFactory is used for the electrical studies, allowing the integration of data and modeling of probability density functions. The results enable a proper evaluation of the project's operational security and confirm the effectiveness of the proposed methodology, which could be applied in Ecuador to assess the impact of future renewable energy projects.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
References
ARCONEL, "Estadística Anual y Multianual del Sector Eléctrico Ecuatoriano 2023," 2023. [Online]. Available: https://controlelectrico.gob.ec/wp-content/uploads/downloads/2024/07/Estadistica-Anual-y-Multianual-del-Sector-Electrico-Ecuatoriano-2023.pdf. [Accessed 02 02 2025].
S. Salazar, G. C. Campaña, J. S. Yépez y R. P. Aguilar, «Evaluación de la Prospectiva Energética de la microrred Baltra – Santa Cruz usando Flujos de Potencia Probabilísticos, » en 2022 IEEE Biennial Congress of Argentina (ARGENCON), 2022, págs. 1-8. DOI: 10.1109/ARGENCON55245.2022.9939679.
J. A. Caliao and A. F. De Souza, “Incorporating wind power plants in generation adequacy assessment considering the Effective Load Carrying Capability,” IEEE Trans. Power Syst., vol. 26, no. 4, pp. 2084–2092, Nov. 2011.
J. R. Jaehnert, G. Doorman, K. Uhlen, and K. B. Lindberg, “Analysing the effect of wind power forecast uncertainty on system operation for the Nordel system,” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1644–1653, July 2014.
G. Constante-Flores, G. Ordóñez-Plata, and L. R. Zapata, “Análisis de confiabilidad del sistema interconectado colombiano con integración de fuentes de energía renovables,” Revista Facultad de Ingeniería, vol. 89, pp. 9–20, Jan. 2018.
R. Billinton and S. Kumar, “The effect of load forecast uncertainty on reliability assessment,” IEEE Trans. Power Apparatus and Systems, vol. PAS-103, no. 7, pp. 1721–1727, 1984.
Z. Ren, W. Li, R. Billinton, and W. Yan, “Probabilistic Power Flow Analysis Based on the Stochastic Response Surface Method,” IEEE Trans. Power Syst., vol. 31, no. 3, pp. 2216–2225, May 2016.
L. L. Garver, “Effective Load Carrying Capability of Generating Units,” IEEE Trans. Power Apparatus and Systems, vol. PAS-85, no. 8, pp. 910–919, Aug. 1966.
G. Constante-Flores, G. Ordóñez-Plata, and L. R. Zapata, “Análisis de confiabilidad del sistema interconectado colombiano con integración de fuentes de energía renovables,” Rev. Fac. Ing. Univ. Antioquia, no. 89, pp. 9–20, Jan. 2018.
J. R. Jaehnert, G. Doorman, K. Uhlen, and K. B. Lindberg, “Analysing the effect of wind power forecast uncertainty on system operation for the Nordel system,” IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1644–1653, Jul. 2014.
S. Kahrobaee and S. Asgarpoor, “Reliability evaluation of distribution systems considering renewable distributed generation,” IEEE Trans. Sustainable Energy, vol. 5, no. 4, pp. 1484–1492, Oct. 2014.
V. Cárdenas, D. Echeverría y J. Cepeda, «Determinación de los Modelos Estocásticos de Generación de las Centrales del Sistema Nacional Interconectado,» Revista Técnica .energía", vol. 12, n.o 1, págs. 84-91, 2016. DOI: 10.37116/revistaenergia.v12. n1.2016.30. dirección: https://revistaenergia.cenace.gob.ec/index.php/cenace/article/view/30.
D. P. Factory, «Probabilistic Analysis,» inf. téc., 2021, User Manual, Gomaringen.
M. Poncela Blanco, A. Spisto, G. Fulli y N. Hrelja, «Generation Adequacy Methodologies Review,» Publications Office of the European Union, inf. téc. LD-1A-27944-ENC (print), LD-1A-27944-EN-N (online), 2016. DOI: 10.2790/647826(print) ,10.2790/054903(online).
M. Kayikci y J. V. Milanovic, «Assessing Transient Response of DFIG-Based Wind Plants—The Influence of Model Simplifications and Parameters,» IEEE Transactions on Power Systems, vol. 23, n.o 2, págs. 545-554, 2008. DOI: 10.1109/TPWRS.2008.919310.
Z. Ren, W. Li, R. Billinton y W. Yan, «Probabilistic Power Flow Analysis Based on the Stochastic Response Surface Method,» IEEE Transactions on Power Systems, vol. 31, págs. 2307-2315, 2016. DOI: 10.1109/PESGM.2016.7741133.
G. Carpinelli, P. Caramia y P. Varilone, ≪Multi-linear Monte Carlo simulation method for probabilistic load flow of distribution systems with wind and photovoltaic generation systems,≫ Renewable Energy, vol. 76, pags. 283-295, 2015. DOI: 10.1016/J.RENENE. 2014.11.028.
T. Chang, «Estimation of wind energy potential using different probability density functions,» Applied Energy, vol. 88, págs. 1848-1856, 2011. DOI: 10.1016/J.APENERGY. 2010.11.010.
D. Villanueva, J. L. Pazos y A. Feijóo, «Probabilistic Load Flow Including Wind Power Generation,» IEEE Transactions on Power Systems, vol. 26, págs. 1659-1667, 2011. DOI: 10.1109/TPWRS.2010.2096436.
F. G. Akgül, B. S¸ enog˘ lu y T. Arslan, «An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution,» Energy Conversion and Management, vol. 114, págs. 234-240, 2016. DOI: 10.1016/J.ENCONMAN.2016.02.026.
P. Schober, C. Boer y L. Schwarte, «Correlation Coefficients: Appropriate Use and Interpretation,» Anesthesia Analgesia, vol. 126, págs. 1763-1768, 2018. DOI: 10 1213/ANE.0000000000002864.
A. Ghosh, S. Ahmed, F. Khan y R. Rusli, «Process Safety Assessment Considering Multivariate Non-linear Dependence Among Process Variables,» Process Safety and Environmental Protection, vol. 135, págs. 70-80, 2020. DOI: 10.1016/j.psep.2019.12.006.
R. Mousavian, C. Lorenz, M. M. Hossainali, B. Fersch y H. Kunstmann, «Copulabased modeling of dependence structure in geodesy and GNSS applications: case study for zenith tropospheric delay in complex terrain,» GPS Solutions, vol. 25, 2020. DOI: 10.1007/s10291-020-01044-4.
G. D’Amico, F. Petroni y F. Prattico, «Wind speed prediction for wind farm applications by Extreme Value Theory and Copulas,» Journal of Wind Engineering and Industrial Aerodynamics, vol. 145, págs. 229-236, 2015. DOI: 10.1016/J.JWEIA.2015.06.018.
R. Billinton y W. Li, Reliability Assessment of Electric Power Systems Using Monte Carlo Methods. Springer, 1994.
N. Anwah y R. Okonkwo, «An Appraisal of NEPA’s Generation Adequacy to Year 2000,» Nigerian Journal of Technology, vol. 14, págs. 35-42, 1990.
A. Lorenzo-Bonache, A. Honrubia-Escribano, F. Jimenez-Buendia y E. Gomez- Lazaro, ≪Field Validation of Generic Type 4 Wind Turbine Models Based on IEC and WECC Guidelines,≫ IEEE Transactions on Energy Conversion, vol. 34, pags. 933-941, 2019. DOI: 10.1109/TEC.2018.2875167.
Energy Systems Integration Group, Type 4 Generic Wind Turbine Generator Model – Phase II, Accessed: September 15, 2024, 2024. direccion: https://www.esig.energy/ wiki-main-page/type-4-generic-wind-turbine-generator-model-phase-ii/.
V. P. Cárdenas Ulloa, «Análisis de confiabilidad de la generación considerando el ingreso de energías renovables no convencionales en el sistema nacional interconectado del Ecuador,» Tesis de Grado, Universidad de las Fuerzas Armadas ESPE, Quito, Ecuador, 2016. dirección: https://repositoriobe.espe.edu.ec/server/api/core/bitstreams/908bdd75-a943-456c-b74e-aea1c961c93a/content.
N. E. Quirola Álava, «Evaluación del impacto de la conexión de energías renovables en la operación de los sistemas eléctricos de potencia: Evaluación de la generación eléctrica que podría inyectar el proyecto eólico durante su vida útil desde una perspectiva estocástica,» Trabajo de Integración Curricular, Escuela Politécnica Nacional, Facultad de Ingeniería Eléctrica y Electrónica, Quito, Ecuador, 2024.
North American Electric Reliability Corporation (NERC), Reliability Standards for the Bulk Electric Systems of North America, NERC Std. [En línea]. Disponible en: https://www.nerc.com