Gestión Óptima De La Energía En Un Proceso Paulatino Y Controlado Para Contribuir A La Descarbonización Del Sector Eléctrico

Contenido principal del artículo

Cristian Cuji
https://orcid.org/0000-0002-9324-6290
Roberto Galarza

Resumen

El sector energético es uno de los principales actores en la producción de gases de efecto invernadero, lo que lo convierte en el principal sector a ser intervenido de manera no sólo ambiental sino también técnica, un proceso de descarbonización del segmento productor de energía contempla la desconexión de sistemas de generación convencional y que hace uso de combustibles fósiles; a cambio de introducir sistemas de generación renovables capaces de cubrir la demanda que antes era suplida por las fuentes convencionales. Esta investigación brinda una perspectiva para encontrar alternativas de descarbonización buscando determinar un proceso adecuado para introducir sistemas de generación renovable, considerando factores económicos de gasto en combustible y el costo de implementación del sistema fotovoltaico. Para ello se realizan simulaciones del sistema de potencia para determinar el despacho de potencia óptimo, además de un modelo lineal de optimización para minimizar los costos mediante la selección óptima de la potencia del sistema de generación renovable. Las simulaciones se realizan por medio de Matlab y PowerFactory con un sistema IEEE de 13 barras.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Cuji, C., & Galarza, . R. (2022). Gestión Óptima De La Energía En Un Proceso Paulatino Y Controlado Para Contribuir A La Descarbonización Del Sector Eléctrico. Revista Técnica "energía&Quot;, 19(1), PP. 71–84. https://doi.org/10.37116/revistaenergia.v19.n1.2022.518
Sección
EFICIENCIA ENERGÉTICA

Citas

G. Morales-Espana and J. Sijm, “Simultaneous reduction of emissions and costs by curtailing renewables in optimal operation of power systems,” IEEE PES Innovative Smart Grid Technologies Conference Europe, vol. 2020-Octob, pp. 1070–1073, 2020, doi: 10.1109/ISGT-Europe47291.2020.9248910.
[2] F. Luo, L. Yang, L. Zhang, X. Wang, D. Zhao, and Y. Liu, “Study on modeling method of renewable energy generation system based on control mode and strategy switching,” Asia-Pacific Power and Energy Engineering Conference, APPEEC, vol. 2016-Decem, pp. 2111–2116, 2016, doi: 10.1109/APPEEC.2016.7779859.
[3] J. Valencia-calvo and G. Olivar-tost, “Modelo y Simulación de un Mercado de Energías Renovables : Integración de Fuentes de Energías Renovables con el Sistema de Generación Convencional,” no. June, pp. 24–27, 2020.
[4] H. Nezamabadi, P. Nezamabadi, M. Setayeshnazar, and G. B. Gharehpetian, “Participation of virtual power plants in energy market with optimal bidding based on Nash-SFE Equilibrium Strategy and considering interruptible load,” 2011 Proceedings of the 3rd Conference on Thermal Power Plants, CTPP 2011, pp. 3–8, 2011.
[5] G. Morales-Espana and J. Sijm, “Simultaneous reduction of emissions and costs by curtailing renewables in optimal operation of power systems,” IEEE PES Innovative Smart Grid Technologies Conference Europe, vol. 2020-Octob, pp. 1070–1073, 2020, doi: 10.1109/ISGT-Europe47291.2020.9248910.
[6] E. Hooshmand and A. Rabiee, “Robust model for optimal allocation of renewable energy sources, energy storage systems and demand response in distribution systems via information gap decision theory,” IET Generation, Transmission and Distribution, vol. 13, no. 4, pp. 511–520, 2019, doi: 10.1049/iet-gtd.2018.5671.
[7] O. Elma, U. S. Selamogullari, M. Uzunoglu, and E. Ugur, “Carbon emission savings with a renewable energy supplied smart home operation,” Proceedings of 2013 International Conference on Renewable Energy Research and Applications, ICRERA 2013, no. October, pp. 1129–1132, 2013, doi: 10.1109/ICRERA.2013.6749922.
[8] C. Cuji and E. Mediavilla, “Controlador Difuso Para Gestión De La Energía En Un Proceso De Transición De Central De Generación Térmica A Renovables,” Revista Técnica “energía,” vol. 18, no. 2, pp. 61–73, Jan. 2022, doi: 10.37116/revistaenergia.v18.n2.2022.491.
[9] C. Cuji and D. Polanco, “Estimación Del Tiempo De Recuperación De Energía Aplicado En Producción De Hidrogeno Con Fines De Generación Eléctrica,” Revista Técnica “energía,” vol. 18, no. 2, pp. 74–84, Jan. 2022, doi: 10.37116/revistaenergia.v18.n2.2022.492.
[10] M. Beken, B. Hangun, and O. Eyecioglu, “Classification of turkey among european countries by years in terms of energy efficiency, total renewable energy, energy consumption, greenhouse gas emission and energy import dependency by using machine learning,” 8th International Conference on Renewable Energy Research and Applications, ICRERA 2019, pp. 951–956, 2019, doi: 10.1109/ICRERA47325.2019.8996583.
[11] T. S. Ustun, C. Ozansoy, and A. Zayegh, “Recent developments in microgrids and example cases around the world - A review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 4030–4041, 2011, doi: 10.1016/j.rser.2011.07.033.
[12] X. Wang and Z. Lu, “Simulation Research on the Operation Characteristics of a DC Microgrid,” National Key R&D Program of China, vol. 1, no. 1, pp. 3–6, 2016.
[13] J. Cho, H. Kim, Y. Cho, H. Kim, and J. Kim, “Demonstration of a DC Microgrid with Central Operation Strategies on an Island,” 2019 IEEE 3rd International Conference on DC Microgrids, ICDCM 2019, 2019, doi: 10.1109/ICDCM45535.2019.9232893.
[14] N. K. Paliwal and R. K. Rai, “Micro-grid operation during grid connected and Islanding mode using conventional and inverter interfaced source,” 2014 International Conference on Smart Electric Grid, ISEG 2014, pp. 1–6, 2015, doi: 10.1109/ISEG.2014.7005606.
[15] L. Che, M. Shahidehpour, A. Alabdulwahab, and Y. Al-Turki, “Hierarchical coordination of a community microgrid with AC and DC microgrids,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp. 3042–3051, 2015, doi: 10.1109/TSG.2015.2398853.
[16] S. Abu-Elzait and R. Parkin, “Economic and Environmental Advantages of Renewable-based Microgrids over Conventional Microgrids,” IEEE Green Technologies Conference, vol. 2019-April, pp. 31–34, 2019, doi: 10.1109/GreenTech.2019.8767146.
[17] D. Zhao, N. Zhang, and Y. Liu, “Micro-grid connected/islanding operation based on wind and PV hybrid power system,” 2012 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2012, pp. 1–6, 2012, doi: 10.1109/ISGT-Asia.2012.6303168.
[18] Z. Liu et al., “Typical island micro-grid operation analysis,” China International Conference on Electricity Distribution, CICED, vol. 2016-Septe, no. Ciced, pp. 1–4, 2016, doi: 10.1109/CICED.2016.7575981.
[19] S. Mathy, P. Menanteau, and P. Criqui, “After the Paris Agreement: Measuring the Global Decarbonization Wedges From National Energy Scenarios,” Ecological Economics, vol. 150, no. January, pp. 273–289, 2018, doi: 10.1016/j.ecolecon.2018.04.012.
[20] Y. Li, Z. Lukszo, and M. Weijnen, “Trade-offs between energy-environmental-economic objectives for China’s power decarbonization policies,” 2015 IEEE Eindhoven PowerTech, PowerTech 2015, 2015, doi: 10.1109/PTC.2015.7232804.
[21] C. S. Psomopoulos, K. Kiskira, K. Kalkanis, H. C. Leligou, and N. J. Themelis, “The role of energy recovery from wastes in the decarbonisation efforts of the EU power sector,” IET Conference Publications, vol. 2020, no. CP780, pp. 485–490, 2020, doi: 10.1049/icp.2021.1223.
[22] J. Teremranova and A. Sauhats, “Electrification and Decarbonization Potential Assessment of Latvian Dwellings,” 2020 IEEE 61st Annual International Scientific Conference on Power and Electrical Engineering of Riga Technical University, RTUCON 2020 - Proceedings, 2020, doi: 10.1109/RTUCON51174.2020.9316549.
[23] C. McGarry, S. Galloway, and G. Burt, “Decarbonisation of rural networks within Mainland Scotland: In support of intentional islanding,” IET Conference Publications, vol. 2021, no. CP783, pp. 283–288, 2021, doi: 10.1049/icp.2021.1379.
[24] J. E. M. Mora, “Decarbonization of the power generation system in Central America,” 2019 IEEE 39th Central America and Panama Convention, CONCAPAN 2019, vol. 2019-Novem, pp. 6–9, 2019, doi: 10.1109/CONCAPANXXXIX47272.2019.8976940.
[25] C. S. Psomopoulos, K. Kiskira, K. Kalkanis, H. C. Leligou, and N. J. Themelis, “the Role of Energy Recovery From Wastes in the Decarbonisation Efforts of the Eu Power Sector,” pp. 485–490, 2021, doi: 10.1049/icp.2021.1223.
[26] Z. Li et al., “Decarbonization Dispatching Strategy for Electric Vehicles Based on Life Cycle Analysis,” Proceedings - 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe, EEEIC / I and CPS Europe 2020, 2020, doi: 10.1109/EEEIC/ICPSEurope49358.2020.9160631.
[27] A. M. Brander et al., “Electricity-specific emission factors for grid electricity,” Ecometrica, no. August, pp. 1–22, 2011.
[28] Z. Zhao, C. Fu, C. Wang, and C. J. Miller, “Improvement to the Prediction of Fuel Cost Distributions Using ARIMA Model,” IEEE Power and Energy Society General Meeting, vol. 2018-Augus, pp. 1–5, 2018, doi: 10.1109/PESGM.2018.8585984.