Optimización de Costos de Producción con el Uso Programación Lineal Entera en la Planeación de la Producción para el Control de Inventario de Materias Primas
Optimization of Production Costs Using Integer Linear Programming in Production Planning for Raw Material Inventory Control
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Cristian Cuji, Jonathan Villarreal, Diseño y Evaluación de un Sistema Fotovoltaico Aislado para Iluminación en Vías Rurales y Carga de Vehículos Eléctricos Basado En Un Enfoque Multipropósito , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Edison Novoa, Gabriel Salazar Yépez, Eliana Buitrón, Gabriel Salazar Pérez, Propuesta de una Metodología para la Focalización del Subsidio Eléctrico “Tarifa De La Dignidad” en Usuarios Residenciales de las Empresas Eléctricas del Ecuador , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Herramienta de Identificación Paramétrica, Validación y Sintonización de Reguladores de Velocidad Mediante Algoritmos de Optimización Heurísticos , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- William Yugcha, Diego Pichoasamin, Paúl Astudillo, Comparación y Optimización del Uso de Filtro Pasivo y Activo de Potencia para Mitigar Armónicos en Redes de Distribución con Cargas no Lineal , Revista Técnica "energía": Vol. 21 Núm. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Rolando Noroña, Edgar Cajas, Carlos Lozada, Marlon Chamba, Análisis de Estabilidad Transitoria Utilizando el Concepto de Inercia y Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Joffre Constante, Augusto Riofrío, Aharon De La Torre, Jaime Cepeda, Metodología para Modelación Estacionaria y Dinámica del S.N.I en HYPERsim, Aplicación del Modelo en Análisis de Transitorios Electromagnéticos para Sistemas de 500 kV , Revista Técnica "energía": Vol. 16 Núm. 2 (2020): Revista Técnica "energía", Edición No. 16
- Gabriel Guañuna, Graciela Colomé, Estefanía Tapia, Predicción del Estado de Estabilidad de Corto Plazo en Sistemas de Potencia con Integración de Generación Renovable Utilizando Aprendizaje Profundo , Revista Técnica "energía": Vol. 22 Núm. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- Joffre Constante, Henry Laica, Kevin Tituaña, Jessica Castillo, Evaluación de Técnicas de Filtrado y Suavizado de Datos en la Estimación Paramétrica del Modelo de Carga ZIP con Datos Tipo Ambiente de PMUétrica del Modelo de Carga ZIP con Datos Tipo Ambiente de PMU , Revista Técnica "energía": Vol. 22 Núm. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Análisis y Caracterización de la Calidad de Energía utilizando Minería de Datos , Revista Técnica "energía": Vol. 22 Núm. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Jorge Paredes, Jaime Cepeda, Jorge Lozada, Parámetros para el Proceso de Molienda en Molinos Verticales Usando Métodos de Optimización , Revista Técnica "energía": Vol. 20 Núm. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Kleber Zhañay, Cristian Leiva, Erika Pilataxi, William Quitiaquez, Modelo de Correlación Desgaste - Cantidad de Sedimentos para la Programación de Mantenimiento Preventivo de una central Hidroeléctrica , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
El presente estudio propone una metodología de reducción de costos en los procesos de fabricación de cuerpos de grifería sanitaria, basada en un modelo de programación lineal entera (PLE) que optimiza la planeación de la producción manteniendo el control de inventarios dentro de límites establecidos. El modelo integra restricciones económicas, logísticas y ambientales, como cupos de importación, capacidad de producción y reutilización de chatarra de latón generada en operaciones de mecanizado. Mediante la implementación del modelo en el lenguaje R y el paquete lpSolve, se determinó la combinación óptima de materias primas —lingotes vírgenes, varilla y material reciclado— para cada lote de producto, minimizando los costos de producción bajo condiciones de disponibilidad de material y almacenamiento. Los resultados evidenciaron un ahorro acumulado de 73 341 USD durante seis meses consecutivos y la reducción del inventario promedio de material para fundir de 116 t a 62 t, demostrando la efectividad del modelo para una producción sostenible. La metodología propuesta es escalable a otros contextos manufactureros con múltiples rutas o restricciones de suministro
Visitas del artículo 11 | Visitas PDF 5
Descargas
- [1] S. S. Chauhan and P. Kotecha, “An efficient multi-unit production planning strategy based on continuous variables,” Applied Soft Computing Journal, vol. 68, pp. 458–477, 2018, doi: 10.1016/j.asoc.2018.03.012.
- [2] G. Bayá, P. Sartor, F. Robledo, E. Canale, and S. Nesmachnow, A Case Study of Smart Industry in Uruguay: Grain Production Facility Optimization, vol. 1555 CCIS. 2022. doi: 10.1007/978-3-030-96753-6_8.
- [3] J. I. P. Rave and G. P. J. Álvarez, “Application of mixed-integer linear programming in a car seat assembling process,” Pesquisa Operacional, vol. 31, no. 3, pp. 593–610, 2011, doi: 10.1590/S0101-74382011000300011.
- [4] F. Dianawati and H. Fatoni, “Determining the optimal inventory holding time using mixed integer linear programming (MILP) in a forwarder company,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0242084.
- [5] J. M. Izar Landeta, C. B. Ynzunza Cortés, and O. Guarneros García, “Variabilidad de la demanda del tiempo de entrega, existencias de seguridad y costo del inventario,” Contaduria y Administracion, vol. 61, no. 3, pp. 499–513, Jul. 2016, doi: 10.1016/j.cya.2015.11.008.
- [6] A. Gholipoor, M. M. Paydar, and A. S. Safaei, “A faucet closed-loop sup-ply chain network design considering used faucet exchange plan,” J Clean Prod, vol. 235, pp. 503–518, Oct. 2019, doi: 10.1016/j.jclepro.2019.06.346.
- [7] J. Johansson, L. Ivarsson, J. E. Ståhl, V. Bushlya, and F. Schultheiss, “Hot Forging Operations of Brass Chips for Material Reclamation after Ma-chining Operations,” in Procedia Manufacturing, Elsevier B.V., 2017, pp. 584–592. doi: 10.1016/j.promfg.2017.07.152.
- [8] V. Agrawal, R. P. Mohanty, S. Agarwal, J. K. Dixit, and A. M. Agrawal, “Analyzing critical success factors for sustainable green supply chain management,” Environ Dev Sustain, vol. 25, no. 8, pp. 8233–8258, 2023, doi: 10.1007/s10668-022-02396-2.
- [9] A. Loibl and L. A. Tercero Espinoza, “Current challenges in copper recycling: aligning insights from material flow analysis with technological re-search developments and industry issues in Europe and North America,” Resour Conserv Recycl, vol. 169, Jun. 2021, doi: 10.1016/j.resconrec.2021.105462.
- [10] P. Asadi, M. Akbari, A. Armani, M. R. M. Aliha, M. Peyghami, and T. Sadowski, “Recycling of brass chips by sustainable friction stir extrusion,” J Clean Prod, vol. 418, no. June, p. 138132, 2023, doi: 10.1016/j.jclepro.2023.138132.
- [11] A. I. Kibzun and V. A. Rasskazova, “Linear Integer Programming Model as Mathematical Ware for an Optimal Flow Production Planning System at Operational Scheduling Stage,” Automation and Remote Control, vol. 84, no. 5, pp. 529–542, 2023, doi: 10.1134/S0005117923050065.
- [12] H. Su, N. Zhou, Q. Wu, Z. Bi, and Y. Wang, “Investigating price fluctuations in copper futures: Based on EEMD and Markov-switching VAR model,” Resources Policy, vol. 82, May 2023, doi: 10.1016/j.resourpol.2023.103518.
- [13] J. M. Izar Landeta, C. B. Ynzunza Cortés, and E. Zermeño Pérez, “Calculation of reorder point when lead time and demand are correlated,” Contaduria y Administracion, vol. 60, no. 4, pp. 864–873, Oct. 2015, doi: 10.1016/j.cya.2015.07.003.
- [14] Patrão, R. L., & Napoleone, A. (2024). Decision Making under Uncertainty for Reconfigurable Manufacturing Systems: A framework for uncertainty representation. IFAC-PapersOnLine, 58(19), 103–108. https://doi.org/10.1016/j.ifacol.2024.09.102
- [15] Napoleone, A., Andersen, A.-L., Brunoe, T. D., & Nielsen, K. (2023). Towards human-centric reconfigurable manufacturing systems: Literature review of reconfigurability enablers for reduced reconfiguration effort and classification frameworks. Journal of Manufacturing Systems, 67, 23–34. https://doi.org/10.1016/j.jmsy.2022.12.014
- [16] Barrera-Diaz, C. A., Nourmohammadi, A., Smedberg, H., Aslam, T., & Ng, A. H. C. (2023). An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems. Mathematics, 11(6). https://doi.org/10.3390/math11061527
- [17] Ang, C. W., Yahaya, S. H., Salleh, M. S., & Cahyadi, N. (2025). A Comprehensive Review of Different Approaches used by Manufacturing Industries in Handling Capacity Planning under Demand Uncertainties. Journal of Advanced Research in Applied Sciences and Engineering Technology, 50(1), 88–106. https://doi.org/10.37934/araset.50.1.88106
- [18] Moghaddam, S. K., Houshmand, M., Saitou, K., & Fatahi Valilai, O. (2020). Configuration design of scalable reconfigurable manufacturing systems for part family. International Journal of Production Research, 58(10), 2974–2996. https://doi.org/10.1080/00207543.2019.1620365
- [19] Imseitif, J., & Nezamoddini, N. (2020). Macro and micro-production planning for reconfigurable manufacturing systems. Proceedings of the 2020 IISE Annual Conference, 784–789.
- [20] Gainanov, D. N., Berenov, D. A., Nikolaev, E. A., & Rasskazova, V. A. (2022). Integer Linear Programming in Solving an Optimization Problem at the Mixing Department of the Metallurgical Production. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 13621 LNCS. https://doi.org/10.1007/978-3-031-24866-5_12
- [21] Rasskazova, V. A. (2024). LIP Model in Solving RCPSP at the Flow Type Production. In Communications in Computer and Information Science: Vol. 1913 CCIS. https://doi.org/10.1007/978-3-031-48751-4_6
- [22] Angizeh, F., Montero, H., Vedpathak, A., & Parvania, M. (2020). Optimal production scheduling for smart manufacturers with application to food production planning. Computers and Electrical Engineering, 84. https://doi.org/10.1016/j.compeleceng.2020.106609
- [23] Coronado-Hernandez, J. R., de la Hoz, L., Leyva, J., Ramos, M., & Zapatero, O. (2020). Linear programming model to minimize the production costs of an adhesive tape company | Modelo programación lineal para minimizar los costos de producción de una empresa de cintas adhesivas. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.369
- [24] Vanli, A. S., & Karas, M. H. (2025). Material and Process Modification to Improve Manufacturability of Low-Lead Copper Alloys by Low-Pressure Die Casting Method. Metals, 15(2). https://doi.org/10.3390/met15020205
- [25] Ying, K.-C., Lin, S.-W., Pourhejazy, P., & Lee, F.-H. (2025). Production scheduling of additively manufactured metal parts. CIRP Journal of Manufacturing Science and Technology, 57, 100–115. https://doi.org/10.1016/j.cirpj.2025.01.005
- [26] Yang, Z., & Liu, S. (2025). Fairness-oriented multi-objective optimization of supply chain planning under uncertainties. Socio-Economic Planning Sciences, 99. https://doi.org/10.1016/j.seps.2025.102198








