Performance Evaluation of LSTM and XGBoost Models for Electric Demand Forecasting in the Ecuadorian Power System
Evaluación del desempeño de modelos LSTM y XGBoost en la predicción de la demanda eléctrica del sistema ecuatoriano
How to Cite
Download Citation
Show authors biography
Similar Articles
- Jorge Lara, Mauricio Samper, Graciela Colomé, Short-Term Prediction of Smart Metering Systems by Multivariable and Multistep Deep Learning Architectures , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Linear Regression for the Identification of the Maximum Power Point in Hybrid Microgrids Implemented in HYPERSIM , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Julio Cardenas, Graciela Colomé, Estefania Tapia, Adaptive Generator Tripping to Improve Transient Stability in Systems with Renewable Generation Integration , Revista Técnica "energía": Vol. 22 No. 2 (2026): Revista Técnica "energía", Edición No. 22 ISSUE II
- Luis Cruz, Cristian Gallardo, Optimization of Solar Capture Using a Dual-Axis Tracker Based on an Astronomical Algorithm in a Small-Scale Photovoltaic Station , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Economic Energy Dispatch of the Micro-Grid in the Galapagos Islands Using the Simsee Platform , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Fernando Toapanta, Melany Oña, Numerical Study with CFD of the Refrigeration in a Vehicle Cabin with two Refrigerants R32 and R600a , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Graciela Colomé, Omar Ramos, Diego Echeverría, Identification Methodology of Oscillatory Modes in PMU Measurement Ambient Type Data , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Demand Estimation for an Electric Vehicles Charging Station Through the Application of Probabilistic Methods , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Morayma Muñoz, Napoleón Padilla, Grace Morrillo, Marco Rosero, Electrocoagulation as a Sustainable Alternative for the Treatment of Refinery Effluents: Application in Esmeraldas Refinery , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Flavio Villacrés, Alexis Torres, Marlon Chamba, Carlos Lozada, Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Carlos Lozada, David Panchi, Wilson Sánchez, Andrés Jacho, Linear Regression for the Identification of the Maximum Power Point in Hybrid Microgrids Implemented in HYPERSIM , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
- Andrés Jacho, Diego Echeverría, Santiago Chamba, Carlos Lozada, Wilson Sánchez, Application of Grid Forming Control in Energy Storage Systems for Primary Frequency Regulation Case Study: Galapagos Islands , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Sánchez, Diego Echeverría, Santiago Chamba, Andrés Jacho, Carlos Lozada, Economic Energy Dispatch of the Micro-Grid in the Galapagos Islands Using the Simsee Platform , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Wilson Brito, Santiago Chamba, Diego Echeverría, Aharon De La Torre, David Panchi, Parameter Identification, Validation and Tunning of Speed Regulator Tool Using Heuristic Optimization Algorithms , Revista Técnica "energía": Vol. 20 No. 2 (2024): Revista Técnica "energía", Edición No. 20, ISSUE II
Accurate short-term electricity demand forecasting is essential for the technical and economic operation of the Ecuadorian power system. This paper presents a comparison between Long Short-Term Memory (LSTM) neural networks and the XGBoost algorithm for short-term load forecasting, incorporating exogenous variables such as apparent temperature and national holidays. Hourly demand data were obtained from the CENACE database starting in 2021, and meteorological data were sourced from the Open-Meteo satellite platform. A recursive single-step forecasting strategy was implemented for a 24-hour prediction horizon. Results show that the LSTM model achieved the highest accuracy, significantly outperforming XGBoost. The study concludes that incorporating exogenous variables improves forecasting performance and that LSTM provides a reliable approach for short-term load prediction to support national power system planning.
Article visits 10 | PDF visits 1
Downloads
- A. Kumar Dubey, A. Kumar, V. García-Díaz, A. Kumar Sharma, y K. Kanhaiya, «Study and analysis of SARIMA and LSTM in forecasting time series data», Sustain. Energy Technol. Assess., vol. 47, p. 101474, oct. 2021, doi: 10.1016/j.seta.2021.101474.
- H. Abbasimehr, M. Shabani, y M. Yousefi, «An optimized model using LSTM network for demand forecasting», Comput. Ind. Eng., vol. 143, p. 106435, may 2020, doi: 10.1016/j.cie.2020.106435.
- M. Tan, S. Yuan, S. Li, Y. Su, H. Li, y F. He, «Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning», IEEE Trans. Power Syst., vol. 35, n.o 4, pp. 2937-2948, jul. 2020, doi: 10.1109/TPWRS.2019.2963109.
- B. ul Islam y S. F. Ahmed, «Short-Term Electrical Load Demand Forecasting Based on LSTM and RNN Deep Neural Networks», Math. Probl. Eng., vol. 2022, n.o 1, p. 2316474, 2022, doi: https://doi.org/10.1155/2022/2316474.
- M. Mohamed, F. E. Mahmood, M. A. Abd, M. Rezkallah, A. Hamadi, y A. Chandra, «Load Demand Forecasting Using eXtreme Gradient Boosting (XGboost)», en 2023 IEEE Industry Applications Society Annual Meeting (IAS), oct. 2023, pp. 1-7. doi: 10.1109/IAS54024.2023.10406613.
- T. Mazibuko y K. Akindeji, «Hybrid Forecasting for Energy Consumption in South Africa: LSTM and XGBoost Approach», Energies, vol. 18, n.o 16, p. 4285, ene. 2025, doi: 10.3390/en18164285.
- Ministerio de Turismo de Ecuador, «Calendario Oficial de Feriados Nacionales 2023-2025». diciembre de 2022. [En línea]. Disponible en: https://www.turismo.gob.ec/wp-content/uploads/2023/12/CALENDARIO-FERIADOS-2023-2025-06-12-2022-.pdf
- R. G. Steadman, «A Universal Scale of Apparent Temperature», J. Appl. Meteorol. Climatol., vol. 23, n.o 12, pp. 1674-1687, dic. 1984, doi: 10.1175/1520-0450(1984)023%3C1674:AUSOAT%3E2.0.CO;2.
- J. Kang y D. M. Reiner, «What is the effect of weather on household electricity consumption? Empirical evidence from Ireland», Energy Econ., vol. 111, p. 106023, jul. 2022, doi: 10.1016/j.eneco.2022.106023.
- S. Ozdemir, Feature Engineering Bookcamp. Simon and Schuster, 2022.
- E. Lewinson, Python for Finance Cookbook: Over 80 powerful recipes for effective financial data analysis. Packt Publishing Ltd, 2022.
- X. Vasques, Machine Learning Theory and Applications: Hands-on Use Cases with Python on Classical and Quantum Machines. John Wiley & Sons, 2024.
- V. Babuskhin y A. Kravchenko, Machine Learning System Design: With end-to-end examples. Simon and Schuster, 2025.
- «Writing a training loop from scratch | TensorFlow Core», TensorFlow. Accedido: 4 de noviembre de 2025. [En línea]. Disponible en: https://www.tensorflow.org/guide/keras/writing_a_training_loop_from_scratch
- «XGBoost Documentation — xgboost 3.1.1 documentation». Accedido: 4 de noviembre de 2025. [En línea]. Disponible en: https://xgboost.readthedocs.io/en/stable/index.html
- A. van Wyk, Machine Learning with LightGBM and Python: A practitioner’s guide to developing production-ready machine learning systems. Packt Publishing Ltd, 2023.
- T. Chen y C. Guestrin, «XGBoost: A Scalable Tree Boosting System», en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, en KDD ’16. New York, NY, USA: Association for Computing Machinery, ago. 2016, pp. 785-794. doi: 10.1145/2939672.2939785.
- S. S. M Paulraj, Introduction to Artificial Neural Networks. Vikas Publishing House, 2009.
- R. Rojas, Neural Networks: A Systematic Introduction. Springer Science & Business Media, 2013.
- S. Hochreiter y J. Schmidhuber, «Long Short-Term Memory», Neural Comput., vol. 9, n.o 8, pp. 1735-1780, nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
- J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.
- R. A. Yaffee y M. McGee, An Introduction to Time Series Analysis and Forecasting: With Applications of SAS® and SPSS®. Academic Press, 2000.
- P. Cichosz, Data Mining Algorithms: Explained Using R. John Wiley & Sons, 2015.
- I. Gridin, Time Series Forecasting using Deep Learning: Combining PyTorch, RNN, TCN, and Deep Neural Network Models to Provide Production-Ready Prediction Solutions (English Edition). BPB Publications, 2021.















