Skip to main navigation menu Skip to main content Skip to site footer

Performance Evaluation of LSTM and XGBoost Models for Electric Demand Forecasting in the Ecuadorian Power System

Evaluación del desempeño de modelos LSTM y XGBoost en la predicción de la demanda eléctrica del sistema ecuatoriano




Section
SISTEMAS ELÉCTRICOS DE POTENCIA

How to Cite
Performance Evaluation of LSTM and XGBoost Models for Electric Demand Forecasting in the Ecuadorian Power System. (2026). Revista Técnica "energía", 22(2), PP. 24-31. https://doi.org/10.37116/revistaenergia.v22.n2.2026.729

Dimensions
PlumX

How to Cite

Performance Evaluation of LSTM and XGBoost Models for Electric Demand Forecasting in the Ecuadorian Power System. (2026). Revista Técnica "energía", 22(2), PP. 24-31. https://doi.org/10.37116/revistaenergia.v22.n2.2026.729

Download Citation

Wilson Brito
Wilson Sánchez

Similar Articles

1-10 of 487

You may also start an advanced similarity search for this article.

Accurate short-term electricity demand forecasting is essential for the technical and economic operation of the Ecuadorian power system. This paper presents a comparison between Long Short-Term Memory (LSTM) neural networks and the XGBoost algorithm for short-term load forecasting, incorporating exogenous variables such as apparent temperature and national holidays. Hourly demand data were obtained from the CENACE database starting in 2021, and meteorological data were sourced from the Open-Meteo satellite platform. A recursive single-step forecasting strategy was implemented for a 24-hour prediction horizon. Results show that the LSTM model achieved the highest accuracy, significantly outperforming XGBoost. The study concludes that incorporating exogenous variables improves forecasting performance and that LSTM provides a reliable approach for short-term load prediction to support national power system planning.


Article visits 10 | PDF visits 1


Downloads

Download data is not yet available.
  1. A. Kumar Dubey, A. Kumar, V. García-Díaz, A. Kumar Sharma, y K. Kanhaiya, «Study and analysis of SARIMA and LSTM in forecasting time series data», Sustain. Energy Technol. Assess., vol. 47, p. 101474, oct. 2021, doi: 10.1016/j.seta.2021.101474.
  2. H. Abbasimehr, M. Shabani, y M. Yousefi, «An optimized model using LSTM network for demand forecasting», Comput. Ind. Eng., vol. 143, p. 106435, may 2020, doi: 10.1016/j.cie.2020.106435.
  3. M. Tan, S. Yuan, S. Li, Y. Su, H. Li, y F. He, «Ultra-Short-Term Industrial Power Demand Forecasting Using LSTM Based Hybrid Ensemble Learning», IEEE Trans. Power Syst., vol. 35, n.o 4, pp. 2937-2948, jul. 2020, doi: 10.1109/TPWRS.2019.2963109.
  4. B. ul Islam y S. F. Ahmed, «Short-Term Electrical Load Demand Forecasting Based on LSTM and RNN Deep Neural Networks», Math. Probl. Eng., vol. 2022, n.o 1, p. 2316474, 2022, doi: https://doi.org/10.1155/2022/2316474.
  5. M. Mohamed, F. E. Mahmood, M. A. Abd, M. Rezkallah, A. Hamadi, y A. Chandra, «Load Demand Forecasting Using eXtreme Gradient Boosting (XGboost)», en 2023 IEEE Industry Applications Society Annual Meeting (IAS), oct. 2023, pp. 1-7. doi: 10.1109/IAS54024.2023.10406613.
  6. T. Mazibuko y K. Akindeji, «Hybrid Forecasting for Energy Consumption in South Africa: LSTM and XGBoost Approach», Energies, vol. 18, n.o 16, p. 4285, ene. 2025, doi: 10.3390/en18164285.
  7. Ministerio de Turismo de Ecuador, «Calendario Oficial de Feriados Nacionales 2023-2025». diciembre de 2022. [En línea]. Disponible en: https://www.turismo.gob.ec/wp-content/uploads/2023/12/CALENDARIO-FERIADOS-2023-2025-06-12-2022-.pdf
  8. R. G. Steadman, «A Universal Scale of Apparent Temperature», J. Appl. Meteorol. Climatol., vol. 23, n.o 12, pp. 1674-1687, dic. 1984, doi: 10.1175/1520-0450(1984)023%3C1674:AUSOAT%3E2.0.CO;2.
  9. J. Kang y D. M. Reiner, «What is the effect of weather on household electricity consumption? Empirical evidence from Ireland», Energy Econ., vol. 111, p. 106023, jul. 2022, doi: 10.1016/j.eneco.2022.106023.
  10. S. Ozdemir, Feature Engineering Bookcamp. Simon and Schuster, 2022.
  11. E. Lewinson, Python for Finance Cookbook: Over 80 powerful recipes for effective financial data analysis. Packt Publishing Ltd, 2022.
  12. X. Vasques, Machine Learning Theory and Applications: Hands-on Use Cases with Python on Classical and Quantum Machines. John Wiley & Sons, 2024.
  13. V. Babuskhin y A. Kravchenko, Machine Learning System Design: With end-to-end examples. Simon and Schuster, 2025.
  14. «Writing a training loop from scratch | TensorFlow Core», TensorFlow. Accedido: 4 de noviembre de 2025. [En línea]. Disponible en: https://www.tensorflow.org/guide/keras/writing_a_training_loop_from_scratch
  15. «XGBoost Documentation — xgboost 3.1.1 documentation». Accedido: 4 de noviembre de 2025. [En línea]. Disponible en: https://xgboost.readthedocs.io/en/stable/index.html
  16. A. van Wyk, Machine Learning with LightGBM and Python: A practitioner’s guide to developing production-ready machine learning systems. Packt Publishing Ltd, 2023.
  17. T. Chen y C. Guestrin, «XGBoost: A Scalable Tree Boosting System», en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, en KDD ’16. New York, NY, USA: Association for Computing Machinery, ago. 2016, pp. 785-794. doi: 10.1145/2939672.2939785.
  18. S. S. M Paulraj, Introduction to Artificial Neural Networks. Vikas Publishing House, 2009.
  19. R. Rojas, Neural Networks: A Systematic Introduction. Springer Science & Business Media, 2013.
  20. S. Hochreiter y J. Schmidhuber, «Long Short-Term Memory», Neural Comput., vol. 9, n.o 8, pp. 1735-1780, nov. 1997, doi: 10.1162/neco.1997.9.8.1735.
  21. J. Brownlee, Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python. Machine Learning Mastery, 2018.
  22. R. A. Yaffee y M. McGee, An Introduction to Time Series Analysis and Forecasting: With Applications of SAS® and SPSS®. Academic Press, 2000.
  23. P. Cichosz, Data Mining Algorithms: Explained Using R. John Wiley & Sons, 2015.
  24. I. Gridin, Time Series Forecasting using Deep Learning: Combining PyTorch, RNN, TCN, and Deep Neural Network Models to Provide Production-Ready Prediction Solutions (English Edition). BPB Publications, 2021.
Sistema OJS 3.4.0.9