Skip to main navigation menu Skip to main content Skip to site footer

Estimation of Exponential Recovery Load Model Parameters Using Synchrophasor Measurements

Estimación Paramétrica del Modelo de Carga de Recuperación Exponencial Utilizando Mediciones Sincrofasoriales




Section
SISTEMAS ELÉCTRICOS DE POTENCIA

How to Cite
Estimation of Exponential Recovery Load Model Parameters Using Synchrophasor Measurements. (2026). Revista Técnica "energía", 22(2), PP. 65-74. https://doi.org/10.37116/revistaenergia.v22.n2.2026.735

Dimensions
PlumX

How to Cite

Estimation of Exponential Recovery Load Model Parameters Using Synchrophasor Measurements. (2026). Revista Técnica "energía", 22(2), PP. 65-74. https://doi.org/10.37116/revistaenergia.v22.n2.2026.735

Download Citation

Joffre Constante
Robert Quinga
Klever Tigasi
Mauricio Mullo

Similar Articles

1-10 of 485

You may also start an advanced similarity search for this article.

The accurate representation of the dynamic behavior of loads, as well as the capture of the temporal variability of their parameters, is currently a fundamental aspect in the analysis and operation of power systems. To this end, automatic and online load modeling methodologies and dynamic load models are used, and the advantages of synchrophasor measurements are exploited. One of the models proposed in the literature is the Exponential Recovery Load (ERL), which allows not only the static behavior of loads to be represented, but also the exponential recovery dynamics of the load when voltage disturbances occur. However, the parametric identification process of this model has been superficially addressed in previous studies. That is why this work research this process comprehensively, from determining the most appropriate optimization algorithm, with a focus on automatic and online load modeling based on synchrophasor measurements, to characterizing the minimum conditions that synchrophasor measurements must meet in order to ensure accurate estimates of the ERL model.


Article visits 8 | PDF visits 9


Downloads

Download data is not yet available.
  1. The NERC Model Validation Task Force of the Transmission Issues Subcommittee, “Power System Model Validation, A White Paper by the NERC Model Validation Task Force of the Transmission Issues Subcommittee,” North American Electric Reliability Corporation, no. December, pp. 1–53, 2010.
  2. J. R. Constante and G. Colomé, “Estado del Arte y Tendencias en el Modelamiento de Carga,” Revista Técnica “energía,” vol. 18, no. 2, pp. 1–12, 2022, doi: 10.37116/revistaenergia.v18.n2.2022.475.
  3. J. V. Milanović, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokić, and L. M. Korunović, “International industry practice on power system load modeling,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3038–3046, 2013, doi: 10.1109/TPWRS.2012.2231969.
  4. M. Mohammed, A. Abdulkarim, A. S. Abubakar, A. B. Kunya, and Y. Jibril, “Load modeling techniques in distribution networks: a review,” Journal of Applied Materials and Technology, vol. 1, no. 2, pp. 63–70, 2020.
  5. A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling - A review,” IEEE Trans Smart Grid, vol. 9, no. 6, pp. 5986–5999, 2018, doi: 10.1109/TSG.2017.2700436.
  6. “IEEE Standard for Synchrophasor Measurements for Power Systems,” 2011. doi: 10.1109/IEEESTD.2011.6111219.
  7. Y. Zhu, “Power System Loads and Power System Stability,” Springer Theses, 2020. doi: 10.1007/978-3-030-37786-1.
  8. E. O. Kontis, I. S. Skondrianos, T. A. Papadopoulos, A. I. Chrysochos, and G. K. Papagiannis, “Generic dynamic load models using artificial neural networks,” 2017 52nd International Universities Power Engineering Conference, UPEC 2017, vol. 2017-Janua, pp. 1–6, 2017.
  9. T. A. Papadopoulos, G. A. Barzegkar-Ntovom, V. C. Nikolaidis, P. N. Papadopoulos, and G. M. Burt, “Online parameter identification and generic modeling derivation of a dynamic load model in distribution grids,” 2017 IEEE Manchester PowerTech, Manchester, UK, pp. 1–6, 2017, doi: 10.1109/PTC.2017.7980994.
  10. H. Guo, K. Rudion, H. Abildgaard, P. Komarnicki, and Z. A. Styczynski, “Parameter estimation of dynamic load model using field measurement data performed by OLTC operation,” IEEE Power and Energy Society General Meeting, pp. 1–7, 2012, doi: 10.1109/PESGM.2012.6345563.
  11. Y. Zhu and J. V. Milanović, “Automatic Identification of Power System Load Models Based on Field Measurements,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3162–3171, 2018, doi: 10.1109/TPWRS.2017.2763752.
  12. E. Polykarpou and E. Kyriakides, “Parameter estimation for measurement-based load modeling using the Levenberg-Marquardt algorithm,” Proceedings of the 18th Mediterranean Electrotechnical Conference: Intelligent and Efficient Technologies and Services for the Citizen, MELECON 2016, no. April, pp. 18–20, 2016.
  13. P. Regulski, F. Gonzalez-Longatt, and V. Terzija, “Estimation of load model parameters from instantaneous voltage and current,” IEEE International Conference on Fuzzy Systems, no. 1, pp. 164–169, 2011.
  14. J. R. Constante and D. G. Colome, “Estimación Paramétrica del Modelo de Carga ZIP basada en Técnicas de Optimización y en Mediciones de PMU,” 2022 IEEE Biennial Congress of Argentina (ARGENCON), San Juan, Argentina, pp. 1–8, 2022, doi: 10.1109/ARGENCON55245.2022.9940010.
  15. M. Brown, M. Biswal, S. Brahma, S. J. Ranade, and H. Cao, “Characterizing and quantifying noise in PMU data,” 2016 IEEE Power and Energy Society General Meeting, vol. 2016, no. 2019–07, pp. 1–5, 2016, doi: 10.1109/PESGM.2016.7741972.
  16. J. R. Constante Segura, G. Colome, and D. Echeverria, “Noise Amplitude in Ambient PMU Data and its Impact on Load Models Identification,” IEEE Latin America Transactions, vol. 22, no. 8, pp. 678–685, 2024, doi: 10.1109/TLA.2024.10620390.
  17. S. S. Rao, Engineering optimization: Theory and practice. John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2020.
Sistema OJS 3.4.0.9