Evaluation of Flexible Configuration Pipeline Networks for Hydrocarbon Transportation

Main Article Content

William Quitiaquez
https://orcid.org/0000-0001-9430-2082
Christian Cholca
https://orcid.org/0000-0001-6030-1241
Erika Pilataxi
https://orcid.org/0009-0009-2633-0407
Fernando Toapanta
https://orcid.org/0000-0002-0838-4702

Abstract

Pipelines are currently the main method of transporting fluids from one place to another within an industrial plant. The present investigation studies the piping configuration of a hydrocarbon transport pump system. An investigation was carried out to identify the different loads present in pump system designs due to self-weight and thermal operating effects to reduce the stresses and displacements acting on the piping, guaranteeing its mechanical integrity and the safety of equipment and plant personnel. The model development and analysis has performed in the specialized software Bently AutoPIPE under static conditions; the operating temperature and pressure data are 100 °F and 320 psi, respectively. For the analysis, two configuration models were used pipes with rigid and flexible system, allowing to compare results and validate that the stresses in pipes and pumps nozzles are within the allowable loads according to ASME B31.3 and API 610 standards. Based on the analysis results, the sustained and thermal stresses are 16.3 and 14.4 ksi, values that represent approximately 75 % of the maximum stress of the system.

Downloads

Download data is not yet available.

Article Details

How to Cite
Quitiaquez, W., Cholca, C., Pilataxi, E. ., & Toapanta, F. (2023). Evaluation of Flexible Configuration Pipeline Networks for Hydrocarbon Transportation . Revista Técnica "energía", 20(1), PP. 109–117. https://doi.org/10.37116/revistaenergia.v20.n1.2023.584
Section
PRODUCCIÓN Y USO DE LA ENERGÍA

References

F. Rumiche y E. Indacochea, «Estudios de Caso de Fallas y Accidentes en Gasoductos y Oleoductos». .

H. XU y B. WANG, «Vibration Analysis of High Pressure Mud Piping Systems and Vibration Reduction Method», en 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 2020, pp. 732-737, doi: 10.1109/WCMEIM52463.2020.00157.

J. Morales, W. Quitiaquez, y I. Simbaña, «Modelos de optimización matemática aplicables al sector downstream y midstream del petróleo. Revisión de la literatura y dirección de investigaciones futuras», Rev. Técnica «energía», vol. 17, n.o 1, pp. 103-111, 2020, doi: 10.37116/revistaenergia.v17.n1.2020.398.

R. N. Rao, M. Maiya, S. Prabhu, G. Santhosh, y G. Hebbar, «The analysis of a piping system for improvement of a system in a process unit», Mater. Today Proc., vol. 46, pp. 2791-2797, 2021, doi: https://doi.org/10.1016/j.matpr.2021.02.595.

J. R y R. K, «Design and Analysis of Piping System with Supports Using CAESAR II», World Acad. Sci. Eng. Technol. Int. J. Comput. Syst. Eng., vol. 10, n.o 5, pp. 1-5, 2016.

A. K. Jha, S. Kennedy, y K. K. Jha, «Pipe Stress Analysis of Pump System in Process Plant», IOP Conf. Ser. Mater. Sci. Eng., vol. 1149, n.o 1, p. 12004, 2021, doi: 10.1088/1757-899x/1149/1/012004.

H. Lu, G. Ma, X. Li, y S. Wu, «Stress analysis of LNG storage tank outlet pipes and flanges», Energies, vol. 11, n.o 4, 2018, doi: 10.3390/en11040877.

A. K. Verma, B. K. Yadav, A. Gandhi, A. Saraswat, S. Verma, y E. R. Kumar, «3D modelling of loop layout, pipe stress analysis and structural responses of high-pressure high-temperature experimental helium cooling loop (EHCL)», Fusion Eng. Des., vol. 145, pp. 87-93, 2019, doi: https://doi.org/10.1016/j.fusengdes.2019.05.015.

S. Saha, «A study on the static interaction between primary and secondary systems comprising structures equipment and piping», Int. J. Press. Vessel. Pip., vol. 170, pp. 59-65, 2019, doi: https://doi.org/10.1016/j.ijpvp.2019.01.009.

U. Zahid, S. Z. Khan, M. A. Khan, H. J. Bukhari, I. Ahmed, y K. A. Khan, «A methodology for flexibility analysis of process piping», Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 232, n.o 6, pp. 751-761, 2018, doi: 10.1177/0954408917738963.

B. Shehadeh, S. I. Ranganathan, y F. H. Abed, «Optimization of piping expansion loops using ASME B31.3», Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng., vol. 230, n.o 1, pp. 56-64, 2016, doi: 10.1177/0954408914532808.

H. Saputra et al., «ANALISA TEGANGAN PIPA PADA SISTEM BALLAST KAPAL TUGBOAT 24 METER MENGGUNAKAN AUTOPIPE», Jurnal Teknologi dan Riset Terapan (JATRA), vol. 3, n.o 1. pp. 2685-4910, 2021.

Reglamento De Operaciones Hidrocarburiferas, «Reglamento De Operaciones Hidrocarburiferas», pp. 1-58, 2018.

B. Li, X. Li, Y. Miao, y H. Yang, «Application of Stress Analysis Software in Oil and Gas Pipeline», IOP Conf. Ser. Earth Environ. Sci., vol. 558, p. 22006, 2020, doi: 10.1088/1755-1315/558/2/022006.

S. U. Bhave y P. Sonawane, «Analysis of Pump Piping Based on Piping Configurations», IJIRST-International J. Innov. Res. Sci. Technol., vol. 2, 2016.

The American Society of MechanicalEngineeres, ASME B31.3-2020. New York, 2021.

M. U. Pawara et al., «Bilge System Design on 500 GT Ferry for Bulukumba-Selayar Route», en IOP Conference Series: Earth and Environmental Science, 2021, vol. 921, n.o 1, doi: 10.1088/1755-1315/921/1/012010.

N. Jaćimović, «Uncertanties in expansion stress evaluation criteria in piping codes», Int. J. Press. Vessel. Pip., vol. 169, pp. 230-241, 2019, doi: https://doi.org/10.1016/j.ijpvp.2019.01.003.

B. G. N. Muthanna, O. Bouledroua, M. Meriem-Benziane, M. R. Setvati, y M. B. Djukic, «Assessment of corroded API 5L X52 pipe elbow using a modified failure assessment diagram», Int. J. Press. Vessel. Pip., vol. 190, p. 104291, 2021, doi: https://doi.org/10.1016/j.ijpvp.2020.104291.

A. W. Husodo, P. Mahardhika, V. V. A. Vadilla, S. P. J. T. P. Kapal, y P. P. N. Surabaya, «ANALISA FLEKSIBILITAS SISTEM PERPIPAAN PADA FATTY ACID PLANT AKIBAT PERGESERAN POSISI EVAPORATOR», J. Integr. |, vol. 112, n.o 2, pp. 2548-9828, 2019.

S.-Y. Hwang, M.-S. Kim, y J.-H. Lee, «Thermal Stress Analysis of Process Piping System Installed on LNG Vessel Subject to Hull Design Loads», J. Mar. Sci. Eng., vol. 8, n.o 11, 2020, doi: 10.3390/jmse8110926.

K. M, design-of-piping-systems-m-w-kellogg1956, vol. 2. 2019.

A. N. Standard, «Enterprise-Control System Integration Part 1 : Models and Terminology», n.o July. 2000.

S. Bisht y D. K. Dodeja, «Piping Stress Analysis of a Hypothetical Oil Refinery Plant Having Separate Suction & Discharge Lines», IJSRD-International J. Sci. Res. Dev., vol. 3, pp. 613-2321, 2015.

API, «API 610 , 11th». pp. 1-218, 2010.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.