Parameter Identification, Validation and Tunning of Speed Regulator Tool Using Heuristic Optimization Algorithms

Main Article Content

Wilson Brito
https://orcid.org/0009-0004-3002-2427
Santiago Chamba
Diego Echeverría
https://orcid.org/0000-0002-1743-9234
Aharon De La Torre
David Panchi

Abstract

Currently, Ecuadorian electrical system operation is experiencing several technical challenges, such as: 1) neighboring electrical systems integration in the Andean Electrical Interconnection System (SINEA) and 2) primary energy sources diversification. Under these new operating conditions, dynamic safety may be compromised by frequency stability issues. Based on frequency regulation, the objective is to use control mechanisms and available generation reserves to respond suitably to the electrical system's demands. Within this context, it becomes imperative to devise methodologies that ensures fast and accurate responses of power-frequency control equipment, such as speed regulators employed for Primary Frequency Regulation in generators. Given this foundation, an approach is presented relying on heuristic optimization methodologies, for the development of a tool that helps to compute the parametric identification and adjustment of speed controllers. Using measurements obtained from the proposed methodology, the developed tool was able to effectively perform the identification and validation of the speed regulation system of the CCS power plant as well as to propose new parameters that improve the response of the identified system.

Downloads

Download data is not yet available.

Article Details

How to Cite
Brito, W., Chamba, S., Echeverría, D., De La Torre, A., & Panchi, D. (2024). Parameter Identification, Validation and Tunning of Speed Regulator Tool Using Heuristic Optimization Algorithms. Revista Técnica "energía", 20(2), PP. 21–33. https://doi.org/10.37116/revistaenergia.v20.n2.2024.612
Section
SISTEMAS ELÉCTRICOS DE POTENCIA
Author Biography

Diego Echeverría, Operador Nacional de Electricidad, CENACE

Recibió su título de Ingeniero Eléctrico de  la Escuela Politécnica Nacional  de  Quito, en 2006. En el año 2021, obtuvo el título de Doctor en Ingeniería Eléctrica en la Universidad Nacional de San Juan, Argentina. Actualmente trabaja en el Operador Nacional de Electricidad CENACE de Ecuador como Subgerente Nacional de Investigación & Desarrollo. Sus áreas de interés son: Estabilidad de Sistemas de Potencia en Tiempo Real, Sistemas de medición sincrofasoriales PMU’s y Control de Emergencia de Sistemas de Potencia.

References

Ministerio de Energía y Minas, “Plan Maestro de Electricidad”. Consultado: el 11 de junio de 2023. [En línea]. Disponible en: https://www.recursosyenergia.gob.ec/plan-maestro-de-electricidad/

S. Chamba, W. Vargas, D. Echeverría, y J. Riofrio, “Regulación Primaria de Frecuencia Mediante Sistemas de Almacenamiento de Energía con Baterías en el Sistema Eléctrico Ecuatoriano”, Rev. Téc. Energ., vol. 19, núm. 1, Art. núm. 1, jul. 2022, doi: 10.37116/revistaenergia.v19.n1.2022.506.

ARCERNNR, Regulación No. ARCERNNR 004/20 Planificación operativa, despacho y operación del sistema eléctrico de potencia. 2023, p. 42. [En línea]. Disponible en: https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2023/02/Anexo-001-2023-Codificacion-Regulacion-004-20_revDE-signed.pdf

ARCERNNR, Resolución Nro. ARCERNNR-001/2023. p. 42. [En línea]. Disponible en: https://www.controlrecursosyenergia.gob.ec/wp-content/uploads/downloads/2023/02/Regulacion-001-23-Fe-Erratas.pdf

NERC Operating Committee, “Reliability Guideline: Primary Frequency Control”. North American Electric Reliability Corporation, mayo de 2019. Consultado: el 11 de junio de 2023. [En línea]. Disponible en: https://www.nerc.com/comm/RSTC_Reliability_Guidelines/PFC_Reliability_Guideline_rev20190501_v2_final.pdf

J. P. Norton, An Introduction to Identification. Courier Corporation, 2009.

J. C. Cepeda, J. L. Rueda, y I. Erlich, “Identification of dynamic equivalents based on heuristic optimization for smart grid applications”, en 2012 IEEE Congress on Evolutionary Computation, jun. 2012, pp. 1–8. doi: 10.1109/CEC.2012.6256493.

T. Hosseinalizadeh, S. M. Salamati, S. A. Salamati, y G. B. Gharehpetian, “Improvement of Identification Procedure Using Hybrid Cuckoo Search Algorithm for Turbine-Governor and Excitation System”, IEEE Trans. Energy Convers., vol. 34, núm. 2, pp. 585–593, jun. 2019, doi: 10.1109/TEC.2018.2868747.

W. Vargas, S. Chamba, A. D. L. Torre, y D. Echeverría, “Protocolo de pruebas y validación de reguladores de velocidad – Aplicación práctica en la central hidroeléctrica Delsitanisagua”, Rev. Téc. Energ., vol. 19, núm. 1, Art. núm. 1, jul. 2022, doi: 10.37116/revistaenergia.v19.n1.2022.507.

E. R. Fernandez Cornejo, R. C. Diaz, y W. I. Alama, “PID Tuning based on Classical and Meta-heuristic Algorithms: A Performance Comparison”, en 2020 IEEE Engineering International Research Conference (EIRCON), oct. 2020, pp. 1–4. doi: 10.1109/EIRCON51178.2020.9253750.

B. Nagaraj y V. Ponnusamy, “Tuning of a PID Controller using Soft Computing Methodologies Applied to Moisture Control in Paper Machine”, Intell. Autom. Soft Comput., vol. 18, pp. 399–411, ene. 2012, doi: 10.1080/10798587.2012.10643251.

M. King, Process Control: A Practical Approach. John Wiley & Sons, 2016.

R. M. B. Macías, S. E. B. Asqui, J.-A. Romero-Pérez, y O. Miguel-Escrig, “Sintonización de Controladores PID para Control de Velocidad de Motores de Corriente Continua mediante Algoritmos Genéticos”, Rev. Perspect., vol. 1, núm. 2, Art. núm. 2, jul. 2019, doi: 10.47187/perspectivas.vol1iss2.pp31-37.2019.

P. X. Verdugo, A. B. De La Torre, J. C. Cepeda, y K. A. Paucar, “Testbed for PSS tuning using synchrophasor measurements and a real-time digital simulator”, en 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), sep. 2017, pp. 1–6. doi: 10.1109/ISGT-LA.2017.8126744.

Z. Xu, “Tuning method for governor control parameters of hydropower generator in isolated grid considering primary frequency performance and small-signal stability”, Glob. Energy Interconnect., vol. 1, núm. 5, pp. 568–575, dic. 2018, doi: 10.14171/j.2096-5117.gei.2018.05.006.

P. Kundur, Power System Stability and Control. McGraw-Hill Education, 1994.

NERC, “Balancing and frequency control: A technical document prepared by the nerc resourcessubcommittee Tech. rep.” NERC Resources Subcommittee, 2011.

Vineet , Singh y Chauhan, “AN OVERVIEW OF HYDRO-ELECTRIC POWER PLANT”, ISST J. Mech. Eng., pp. 59–62, jun. 2015.

W. Almeida, J. Cepeda, y V. Flores, “Modelación Estática y Dinámica del AGC en PowerFactory Integrado a la Base de Datos del Sistema Eléctrico Ecuatoriano”, Rev. Téc. Energ., vol. 12, núm. 1, Art. núm. 1, ene. 2016, doi: 10.37116/revistaenergia.v12.n1.2016.39.

M. Ullauri, J. Cepeda, y H. Arcos, “Modelación y Validación de Sistemas de Control de Unidades de Generación del Sistema Nacional Interconectado Ecuatoriano”, Rev. Téc. Energ., vol. 11, núm. 1, Art. núm. 1, ene. 2015, doi: 10.37116/revistaenergia.v11.n1.2015.71.

E. R. Herrera Guerra, J. L. García Sosa, R. Gustabello Cogle, E. R. Herrera Guerra, J. L. García Sosa, y R. Gustabello Cogle, “Implementación de algoritmos de control en la Unidad # 1 de la Central Hidroeléctrica Hanabanilla para la regulación de frecuencia del Sistema Electro-energético Nacional”, Ing. Electrónica Automática Comun., vol. 39, núm. 3, pp. 31–44, dic. 2018.

European Comission, “COMMISSION REGULATION (EU) 2016/631 establishing a network code on requirements for grid connection of generators”. European Comission, 2016. [En línea]. Disponible en: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0631&from=EN

K. Y. Lee y M. A. El-Sharkawi, Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems. John Wiley & Sons, 2008.

P. PONCE, INTELIGENCIA ARTIFICIAL - Con Aplicaciones a la Ingeniería, 1a ed. Mexico: Alfaomega, 2010.

K. Y. Lee y Z. A. Vale, Applications of Modern Heuristic Optimization Methods in Power and Energy Systems. John Wiley & Sons, 2020.

J. Blank y K. Deb, “Pymoo: Multi-Objective Optimization in Python”, IEEE Access, vol. 8, pp. 89497–89509, 2020, doi: 10.1109/ACCESS.2020.2990567.

M. R. C. Reis et al., “Heuristic and deterministic strategies applied on a PID controller tuning for speed control of a DC motor”, en 2013 13th International Conference on Environment and Electrical Engineering (EEEIC), nov. 2013, pp. 223–228. doi: 10.1109/EEEIC-2.2013.6737912.

S. Pareek, M. Kishnani, y R. Gupta, “Optimal tuning Of PID controller using Meta heuristic algorithms”, en 2014 International Conference on Advances in Engineering & Technology Research (ICAETR - 2014), ago. 2014, pp. 1–5. doi: 10.1109/ICAETR.2014.7012816.

F. Martins, “Tuning PID controllers using the ITAE Criterion”, doi: 0949-149X/91.

Z. Cheng y X. Hong, “PID Controller Parameters Optimization Based on Artificial Fish Swarm Algorithm”, en 2012 Fifth International Conference on Intelligent Computation Technology and Automation, ene. 2012, pp. 265–268. doi: 10.1109/ICICTA.2012.73.

H. Li, Y. Luo, y Y. Chen, “A Fractional Order Proportional and Derivative (FOPD) Motion Controller: Tuning Rule and Experiments”, IEEE Trans. Control Syst. Technol., vol. 18, núm. 2, pp. 516–520, mar. 2010, doi: 10.1109/TCST.2009.2019120.

B. Mohandes, Y. L. Abdelmagid, y I. Boiko, “Development of PSS tuning rules using multi-objective optimization”, Int. J. Electr. Power Energy Syst., vol. 100, pp. 449–462, sep. 2018, doi: 10.1016/j.ijepes.2018.01.041.

S. M. Shinners, Modern Control System Theory and Design. John Wiley & Sons, 1998.

R. C. Dorf y R. H. Bishop, Modern Control Systems. Pearson, 2017.

W. Levine, The control Handbook (Volume I), IEEE Press., vol. 1, 2 vols. IEEE Press, 1999.

W. Vargas y P. Verdugo, “Validación e Identificación de Modelos de Centrales de Generación Empleando Registros de Perturbaciones de Unidades de Medición Fasorial, Aplicación Práctica Central Paute - Molino”, Rev. Téc. Energ., vol. 16, núm. 2, Art. núm. 2, ene. 2020, doi: 10.37116/revistaenergia.v16.n2.2020.352.

CIGRE Task Force, “Analysis and Control of Power System Oscillations”. Study Committee 38, 1996.

“WAProtector: Power System Wide Area Monitoring”. ELPROS. [En línea]. Disponible en: http://www.elpros.si/

“IEEE Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems”, IEEE Std 4212-2014 Revis. IEEE Std 4212-1990, pp. 1–63, jun. 2014, doi: 10.1109/IEEESTD.2014.6845300.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.