System Frequency Response Models for the Ecuadorian Interconnected Power System

Main Article Content

Nelson Granda
https://orcid.org/0000-0002-0215-4527
Karen Paguanquiza
https://orcid.org/0009-0007-1308-1099

Abstract

This paper presents a methodology, based on frequency response models, to estimate the minimum or maximum value -nadir- that the frequency reaches when a generation - load unbalance occurs in the power system. To this end, the 1st order reduced equivalent model of the generator’s power-frequency control system is determined using the "Parameter Estimator" of Matlab/Simulink. Then, a set of equations coming from the reduced equivalent model is established to estimate the value of the maximum transient frequency deviation and its occurrence time. To illustrate the application of the proposed methodology, the IEEE New England test system has been chosen. Once this is done, the proposed methodology is applied to the Ecuadorian Interconnected Power System. The results of time domain simulations using the PowerFactory software are presented and compared with the results calculated using the developed reduced and analytical models. It is concluded that the proposed methodology estimates with high accuracy the maximum transient frequency deviation and its time of occurrence.

Downloads

Download data is not yet available.

Article Details

How to Cite
Granda, N., & Paguanquiza, K. (2024). System Frequency Response Models for the Ecuadorian Interconnected Power System. Revista Técnica "energía", 21(1), PP. 22–33. https://doi.org/10.37116/revistaenergia.v21.n1.2024.637
Section
SISTEMAS ELÉCTRICOS DE POTENCIA
Author Biography

Karen Paguanquiza, Operador Nacional de Electricidad - CENACE

.

References

Granda Nelson, “Esquema Adaptable de Separación Controlada en Islas para Sistemas Eléctricos de Potencia,” PhD. Thesis, Universidad Nacional de San Juan, Argentina, 2015.

N. Hatziargyriou et al., “Definition and Classification of Power System Stability - Revisited & Extended,” IEEE Transactions on Power Systems, vol. 36, no. 4, 2021, doi: 10.1109/TPWRS.2020.3041774.

H. Bevrani, Robust Power System Frequency Control. 2009. doi: 10.1007/978-0-387-84878-5.

L. Sigrist, E. Lobato, F. M. Echavarren, I. Egido, and L. Rouco, Island power systems. 2016. doi: 10.1201/9781315368740.

H. Saadat, Power System Analysis, 3rd Edition. PSA Publishing LLC, 2010.

P. M. Anderson and M. Mirheydar, “A low-order system frequency response model,” IEEE Transactions on Power Systems, vol. 5, no. 3, 1990, doi: 10.1109/59.65898.

D. L. H. Aik, “A general-order system frequency response model incorporating load shedding: Analytic Modeling and applications,” IEEE Transactions on Power Systems, vol. 21, no. 2, 2006, doi: 10.1109/TPWRS.2006.873123.

M. Krpan and I. Kuzle, “Towards the New Low-Order System Frequency Response Model of Power Systems with High Penetration of Variable-Speed Wind Turbine Generators,” in IEEE Power and Energy Society General Meeting, 2018. doi: 10.1109/PESGM.2018.8586570.

T. Baskarad, I. Kuzle, and N. Holjevac, “Photovoltaic System Power Reserve Determination Using Parabolic Approximation of Frequency Response,” IEEE Trans Smart Grid, vol. 12, no. 4, pp. 3175–3184, Jul. 2021, doi: 10.1109/TSG.2021.3061893.

L. Sigrist and L. Rouco, “An induction motor model for system frequency response models,” International Transactions on Electrical Energy Systems, vol. 27, no. 11, 2017, doi: 10.1002/etep.2413.

H. Huang et al., “Generic System Frequency Response Model for Power Grids with Different Generations,” IEEE Access, vol. 8, 2020, doi: 10.1109/ACCESS.2020.2965591.

L. Liu, W. Li, Y. Ba, J. Shen, C. Jin, and K. Wen, “An Analytical Model for Frequency Nadir Prediction following a Major Disturbance,” IEEE Transactions on Power Systems, vol. 35, no. 4, 2020, doi: 10.1109/TPWRS.2019.2963706.

M. Amin, “Toward self-healing energy infrastructure systems,” IEEE Computer Applications in Power, vol. 14, no. 1, 2001, doi: 10.1109/67.893351.

V. V. Terzija, “Adaptive underfrequency load shedding based on the magnitude of the disturbance estimation,” IEEE Transactions on Power Systems, vol. 21, no. 3, 2006, doi: 10.1109/TPWRS.2006.879315.

P. M. Anderson and M. Mirheydar, “An adaptive method for setting underfrequency load shedding relays,” IEEE Transactions on Power Systems, vol. 7, no. 2, 1992, doi: 10.1109/59.141770.

“Parameter Estimation - MATLAB & Simulink.” Accessed: Apr. 01, 2024. [Online]. Available: https://www.mathworks.com/help/sldo/parameter-estimation.html

I. Egido, F. Fernandez-Bernal, P. Centeno, and L. Rouco, “Maximum frequency deviation calculation in small isolated power systems,” IEEE Transactions on Power Systems, vol. 24, no. 4, 2009, doi: 10.1109/TPWRS.2009.2030399.

J. Cepeda and J. Rueda, “Identificación de Equivalentes Dinámicos Mediante Optimización de Mapeo Media-Varianza en Ambiente DIgSILENT Power Factory,” Revista Técnica “energía,” vol. 9, no. 1, pp. 13–22, Jan. 2013, doi: 10.37116/REVISTAENERGIA.V9.N1.2013.128.

“Reserva de Generación. Periodo Abril 2019 - Septiembre 2019,” 2019.

Most read articles by the same author(s)