Identification of Critical Generators in Transient Stability Problems
Main Article Content
Abstract
The literature has focused on transient stability, concentrating on its assessment and control under operational situations and limited contingencies. This often leads to transient stability issues not addressed in studies, making the system vulnerable to imminent collapses. In this context, this work proposes a methodology for identifying critical generators under a broad range of operational scenarios and contingencies, serving as a foundation for the development of an adaptable disconnection scheme that responds to the system's real-time dynamics. The methodology relies on the generation of a database encompassing a wide spectrum of operational scenarios and N-1 contingencies, as well as the systematic disconnection of generators to identify those deemed critical for mitigating transient instability. In a controlled simulation environment (IEEE New England 39-bus system in DigSILENT Power Factory software), the methodology effectively identified critical generators in 99.6% of the simulated cases deemed unstable due to transient stability issues, thereby establishing a solid foundation for training a learning model that operates in real time according to the system's dynamics, which translates into an adaptable generation disconnection scheme.
Downloads
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
References
J. D. E. Echeverria, C. J. C. Cepeda, and D. G. Colome, “Real-time transient stability assessment of electric power systems using predictive-SIME based on machine learning,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), IEEE, Sep. 2017, pp. 1–6.
M. Pavella, D. Ernst, and D. Ruiz-Vega, “TRANSIENT STABILITY OF POWER SYSTEMS A Unified Approach to Assessment and Control.”, Springer. 2000.
M. Pavella and P. G. Murthy, Transient stability of power systems: theory and practice, Wiley. 1994.
E. A. T. Suarez and D. G. Colome, “Evaluación de la Estabilidad de Corto Plazo y Discriminación de Inestabilidades Transitoria y de Tensión,” in 2022 IEEE Biennial Congress of Argentina (ARGENCON), IEEE, Sep. 2022, pp. 1–7.
“Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions,” IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1387–1401, Aug. 2004.
V. Van Acker, P. Cholley, P. Crossley, C. W. Taylor, and C. Vournas, “SYSTEM PROTECTION SCHEMES IN POWER NETWORKS,” CIGRE. 2001.
V. H. Hinojosa, “Pronóstico de la demanda de corto plazo en sistemas de suministro de energía eléctrica utilizando inteligencia artificial,” San Juan, 2007.
J. L. Rueda, “Evaluación y mejora de la estabilidad de pequeña señal de sistemas eléctricos de potencia considerando incertidumbres,” San Juan, 2009.
J. Cepeda, “Evaluación de la Vulnerabilidad del Sistema Eléctrico de Potencia en tiempo real usando Tecnología de Medición Sincrofasoria,” Universidad Nacional de San Juan, San Juan, 2013.
L. Wenyuan, Risk assessment of power systems: models, methods, and applications. A Jhon Wiley & Sons, 2005.
R. Zhang, Y. Xu, Z. Y. Dong, and K. P. Wong, “Post‐disturbance transient stability assessment of power systems by a self‐adaptive intelligent system,” IET Generation, Transmission & Distribution, vol. 9, no. 3, pp. 296–305, Feb. 2015.
A. D. Rajapakse, F. Gomez, K. Nanayakkara, P. A. Crossley, and V. V. Terzija, “Rotor Angle Instability Prediction Using Post-Disturbance Voltage Trajectories,” IEEE Transactions on Power Systems, vol. 25, no. 2, pp. 947–956, May 2010.
NR Electric Co. Ltd, “PCS-996 Phasor Measurement Unit,” 2019.
T. B. Nguyen and M. A. Pai, “Dynamic security-constrained rescheduling of power systems using trajectory sensitivities,” IEEE Transactions on Power Systems, vol. 18, no. 2, pp. 848–854, May 2003.
DigSilent GmbH, “Synchronous Machine,” Gomaringen Germany, 2018
DIgSILENT GmbH, “Induction Machine TechRef ElmAsm V2.1,” Gomaringen, Germany, 2010.
D. E. Echeverria Jurado, J. C. Cepeda Campana, and D. Graciela Colome, “Predicción de la Estabilidad Transitoria de Sistemas Eléctricos utilizando Aprendizaje Automático,” in 2022 IEEE Biennial Congress of Argentina (ARGENCON), IEEE, Sep. 2022, pp. 1–8.