Transient Stability Analysis Using the Concept of Inertia and Data Mining

Main Article Content

Rolando Noroña
https://orcid.org/0009-0002-7799-2880
Edgar Cajas
https://orcid.org/0000-0003-0656-7334
Carlos Lozada
https://orcid.org/0000-0002-6036-3124
Marlon Chamba

Abstract

This work proposes a methodology to evaluate transient stability in power systems through time series clustering using the Dynamic Time Warping (DTW) metric. A script developed in Python integrates with DIgSILENT PowerFactory, allowing the extraction of rotor angles from each generator and referencing them to the Center of Inertia (COI). To obtain rotor angles, the study performs simulations on the New England 39-bus, 10-generator system in DIgSILENT PowerFactory, applying the unwrapping technique to correct discontinuities. Then, the methodology applies the K-means algorithm based on DTW to segment the generating units according to their transient response, identifying critical generators. However, DIgSILENT PowerFactory only provides plots of rotor angles referenced to a specific generating unit, which limits stability assessment. To overcome this restriction, this study implements the results directly into DIgSILENT PowerFactory, enabling the visualization of Python -processed graphs within the software environment. This integration enhances decision-making efficiency in power system operation and planning

Downloads

Download data is not yet available.

Article Details

How to Cite
Noroña, R., Cajas, E., Lozada, C., & Chamba, M. (2025). Transient Stability Analysis Using the Concept of Inertia and Data Mining. Revista Técnica "energía", 22(1), PP. 1–11. https://doi.org/10.37116/revistaenergia.v22.n1.2025.700
Section
SISTEMAS ELÉCTRICOS DE POTENCIA
Author Biography

Marlon Chamba

He was born in Loja, Ecuador, in 1982. He obtained his degree in Electrical Engineering from the National Polytechnic School, Ecuador, in 2007. In 2016, he earned a Ph.D. in Electrical Engineering from the National University of San Juan, Argentina. He currently works at the National Research and Development Sub-management of CENACE. His research areas include Energy Markets, International Electricity Transactions, Reliability, and Power System Security Analysis.

References

J. C. Cepeda, J. L. Rueda, D. G. Colomé, and D. E. Echeverría, “Evaluación de estabilidad transitoria en tiempo real basada en la estimación del centro de inercia a partir de registros de unidades de medida fasoriales,” IET Gener. Transm. Distrib., vol. 8, no. 8, pp. 1363–1376, 2014, doi: 10.1049/iet-gtd.2013.0616.

U. Castro Legarza and E. Álvarez Pelegry, “Redes de distribución,” Inst. Vasco Compet., vol. 1, pp. 19–24, 2013, [Online]. Available: http://nanacamilpa.gob.mx/contenidos/nanacamilpa/pdfs/EspecifZTecnicZMANUALZDEZAGUAZPOTABLEZRedesZdeZdistribucin.pdf.

M. R. Salimian and M. R. Aghamohammadi, “Un nuevo índice basado en la proximidad de la oscilación entre áreas al punto UEP para predecir el momento adecuado de isla controlada,” Int. J. Electr. Power Energy Syst., vol. 104, no. March 2018, pp. 383–400, 2019, doi: 10.1016/j.ijepes.2018.07.004.

J. G. Calderón-Guizar, “Estudios de estabilidad transitoria en sistemas eléctricos industriales con generación propia interconectados con el sistema de transmisión,” Ing. Investig. y Tecnol., vol. 11, no. 4, pp. 445–451, 2010, doi: 10.22201/fi.25940732e.2010.11n4.038.

S. García, M. Héctor, and G. Jorge, “Transitorios electromecánicos en sistemas de potencia industriales,” Nov. Sci., vol. 7, no. 2007–0705, pp. 116–132, 2015, [Online]. Available: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-07052015000300116&lng=es&tlng=es.

W. M. Haddad y V. S. Chellaboina, Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, Princeton, NJ: Princeton University Press, 2008.

J. C. Cepeda, “Evaluación de Estabilidad Transitoria de Sistemas de Potencia utilizando el concepto de Centro de Inercia,” no. 14, pp. 54–63, 2018.

C. Gallardo and D. Andagoya, “Análisis de Estabilidad Angular del Sistema Eléctrico Ecuatoriano,” Esc. Politécnica Nac. Fac. Ing. Eléctrica y Electrónica, vol. 33, no. 3, p. 11, 2014, [Online]. Available: https://revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/download/116/pdf/1688

F. R. Serrano, “Clustering aplicado a condiciones de operación en diseño de esquemas de protecciones especiales en sistemas electricos de potencia,” 2024.

N. I. A. Wahab and A. Mohamed, “Índice de ángulo del rotor basado en COI basado en áreas para evaluación de estabilidad transitoria y control de sistemas de energía,” Abstr. Appl. Anal., vol. 2012, 2012, doi: 10.1155/2012/410461.

M. Chamba, W. Vargas, and J. Cepeda, “Evaluación probabilística de la estabilidad transitoria considerando la incertidumbre de la demanda y gestión del riesgo,” Rev. Técnica “energía,” vol. 15, no. I, pp. 1–10, 2018.

D. Giordano, M. Mellia y T. Cerquitelli, “K-MDTSC: K-Multi-Dimensional Time-Series Clustering Algorithm,” Electronics, vol. 10, no. 10, pp. 1–18, 2021, doi: 10.3390/electronics10101166.

F. Martínez-álvarez, P. De Energ, and F. Mart, “Aplicación de Técnicas de Clustering a la Serie Temporal de los Precios de la Energía en el Mercado Eléctrico,” no. September, 2007.

F. Petitjean, A. Ketterlin, and P. Gançarski, "A global averaging method for dynamic time warping, with applications to clustering," Pattern Recognition, vol. 44, no. 3, pp. 678-693, 2011, doi: 10.1016/j.patcog.2010.09.013.

C. A. Yajure Ramírez, “Aplicación de la metodología de Ciencia de Datos para analizar datos de facturación de energía eléctrica. Caso de estudio: Uruguay 2000-2022,” Rev. Investig. Sist. e Informática, vol. 15, no. 1, pp. 127–138, 2022, doi: 10.15381/risi.v15i1.23544.

Paulo Victor Lopes Pires, Eder Barboza Kapisch, Leandro Rodrigues Manso Silva, Carlos Augusto Duque, and Paulo Fernando Ribeiro, “Detecção de Novidades Baseada nas Métricas de Similaridades Dinâmicas: DTW, EDR e TWED, Aplicadas em Sinais de Qualidade de Energia,” Procedings do XXIV Congr. Bras. Automática, pp. 3098–3105, 2022, doi: 10.20906/cba2022/3596.

M. Costantini, “A Novel Phase Unwrapping Method Based on Network Programming,” October, vol. 36, no. 3, pp. 813–821, 1998.

J. Jiménez-Ruiz, A. Honrubia-Escribano, and E. Gómez-Lázaro, “Uso combinado de Python y DIgSILENT PowerFactory para el análisis de sistemas eléctricos con una gran cantidad de generación renovable variable.,” Electron., vol. 13, no. 11, 2024, doi: 10.3390/electronics13112134.

DIgSILENT GmbH, “PowerFactory - Python Function Reference”, Revision 4, Feb. 3, 2021. [Online]. Available: https://www.digsilent.de

T. Athay, R. Podmore, and S. Virmani, “A practical method for the direct analysis of transient stability”, IEEE Transactions on Power Apparatus and Systems, vol. PAS-98, no. 2, pp. 573–584, Mar. 1979. doi: 10.1109/TPAS.1979.319407.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.