Estado del Arte y Tendencias en el Modelamiento de Carga

Contenido principal del artículo

Joffre Constante
https://orcid.org/0000-0003-1787-5295
Graciela Colomé
https://orcid.org/0000-0002-2926-5366

Resumen

El modelamiento de la carga es fundamental en el diseño, planificación, operación, control y muchos otros estudios y aplicaciones relacionados al correcto funcionamiento de los sistemas eléctricos. Aunque el modelamiento de carga ha sido ampliamente estudiado en el pasado, hoy en día ha resurgido un gran interés por parte de los investigadores y la industria debido: al cambio tecnológico de la demanda, al crecimiento continuo de las redes, a la operación cerca de los límites de estabilidad, a la generación distribuida, al gran despliegue de tecnologías de medición, entre muchos otros. En este contexto, el objetivo de este trabajo es presentar una revisión bibliográfica sobre modelamiento de carga, en la cual se prioriza las investigaciones de la última década. Para lograr el objetivo precitado primero se propone, a conocimiento de los autores, la primera metodología sistemática de clasificación bibliográfica enfocada específicamente al modelamiento de carga. En base a esta metodología se deducen los resultados que incluyen: tendencias actuales de investigación, áreas poco investigadas y nichos futuros de investigación; estos resultados son claramente descritos y resaltados.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Constante, J., & Colomé, G. (2022). Estado del Arte y Tendencias en el Modelamiento de Carga. Revista Técnica "energía", 18(2), PP. 1–12. https://doi.org/10.37116/revistaenergia.v18.n2.2022.475
Sección
SISTEMAS ELÉCTRICOS DE POTENCIA

Citas

[1] The NERC Model Validation Task Force of the Transmission Issues Subcommittee, “Power System Model Validation, A White Paper by the NERC Model Validation Task Force of the Transmission Issues Subcommittee,” North Am. Electr. Reliab. Corp., no. December, pp. 1–53, 2010.
[2] P. Kundur, Power System Stability and Control. 1994.
[3] T. J. Overbye, “Effects of load modelling on analysis of power system voltage stability,” Int. J. Electr. Power Energy Syst., vol. 16, no. 5, pp. 329–338, 1994, doi: 10.1016/0142-0615(94)90037-X.
[4] Y. Zhang, W. Zhang, X. Chu, and Y. Liu, “Real-time optimal voltage control using measurement-based aggregate load model,” Electr. Power Syst. Res., vol. 116, pp. 293–300, 2014, doi: 10.1016/j.epsr.2014.06.020.
[5] N. L. M. T. F. LMTF, “Dynamic Load Modeling, Technical Reference Document,” 2016.
[6] S. R. Salkuti, A. R. Abhyankar, and P. R. Bijwe, “Multi-objective day-ahead real power market clearing with voltage dependent load models,” Int. J. Emerg. Electr. Power Syst., vol. 12, no. 4, 2011, doi: 10.2202/1553-779X.2727.
[7] M. Zhang, Z. Luan, and X. Zhao, “The Influence of Load Model on Transient Stability Limit Removal Time of Power System,” IOP Conf. Ser. Mater. Sci. Eng., vol. 361, no. 1, 2018, doi: 10.1088/1757-899X/361/1/012021.
[8] A. Herrera-Orozco, S. Pérez-Londoño, and J. Mora-Flórez, “Load modeling for fault location in distribution systems with distributed generation,” Proc. 2012 6th IEEE/PES Transm. Distrib. Lat. Am. Conf. Expo. T D-LA 2012, pp. 1–8, 2012, doi: 10.1109/TDC-LA.2012.6319110.
[9] V. V. S. N. Murty and A. Kumar, “Mesh distribution system analysis in presence of distributed generation with time varying load model,” Int. J. Electr. Power Energy Syst., vol. 62, pp. 836–854, 2014, doi: 10.1016/j.ijepes.2014.05.034.
[10] V. V. S. N. Murty and A. Kumar, “Capacitor Allocation in Radial Distribution System with Time Varying ZIP Load Model and Energy Savings,” Procedia Comput. Sci., vol. 70, pp. 377–383, 2015, doi: 10.1016/j.procs.2015.10.039.
[11] M. Jereminov, B. Hooi, A. Pandey, H. A. Song, C. Faloutsos, and L. Pileggi, “Impact of Load Models on Power Flow Optimization,” IEEE Power Energy Soc. Gen. Meet., vol. 2019-Augus, 2019, doi: 10.1109/PESGM40551.2019.8974085.
[12] B. Bletterie, A. Latif, P. Zehetbauer, S. M. Villanueva, E. Romero-Ramos, and H. Renner, “On the impact of load modelling on distribution network studies,” 2017 IEEE PES Innov. Smart Grid Technol. Conf. Eur. ISGT-Europe 2017 - Proc., vol. 2018-Janua, no. 849902, pp. 1–6, 2017, doi: 10.1109/ISGTEurope.2017.8260262.
[13] A. Abu-Rayash and I. Dincer, “Analysis of the electricity demand trends amidst the COVID-19 coronavirus pandemic,” Energy Res. Soc. Sci., vol. 68, no. June, p. 101682, 2020, doi: 10.1016/j.erss.2020.101682.
[14] C. W. G. C4.605, “Modelling and Aggregation of Loads in Flexible Power Networks,” 2014.
[15] M. Diaz-Aguilo et al., “Field-validated load model for the analysis of CVR in distribution secondary networks: Energy conservation,” IEEE Trans. Power Deliv., vol. 28, no. 4, pp. 2428–2436, 2013, doi: 10.1109/TPWRD.2013.2271095.
[16] M. Mohammed, A. Abdulkarim, A. S. Abubakar, A. B. Kunya, and Y. Jibril, “Load modeling techniques in distribution networks: a review,” J. Appl. Mater. Technol., vol. 1, no. 2, pp. 63–70, 2020, doi: 10.31258/jamt.1.2.63-70.
[17] A. Arif, Z. Wang, J. Wang, B. Mather, H. Bashualdo, and D. Zhao, “Load modeling - A review,” IEEE Trans. Smart Grid, vol. 9, no. 6, pp. 5986–5999, 2018, doi: 10.1109/TSG.2017.2700436.
[18] Y. Zhu, “Power System Loads and Power System Stability,” Springer Theses, 2020.
[19] A. J. Saavedra-Montes and J. M. Ramírez-Scarpetta, “Método de clasificación bibliográfica aplicado a la identificación de sistemas de excitación de generadores sincrónicos.,” Energía y Comput., vol. 16, no. 2, 2008.
[20] Q. Huang et al., “A generic modeling and development approach for WECC composite load model,” Electr. Power Syst. Res., vol. 172, no. February, pp. 1–10, 2019, doi: 10.1016/j.epsr.2019.02.027.
[21] J. V. Milanović, K. Yamashita, S. Martínez Villanueva, S. Ž. Djokić, and L. M. Korunović, “International industry practice on power system load modeling,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3038–3046, 2013, doi: 10.1109/TPWRS.2012.2231969.
[22] D. J. (CA) B. BADRZADEH (AU), Z. EMIN (GB), E. HILLBERG (SE) and M. V. E. (IE) L. KOCEWIAK (DK), G. LIETZ (DE), F. F. DA SILVA (DK), “The Need for Enhanced Power System Modelling Techniques and Simulation Tools,” Cigre Sci. Eng. • N°17 Febr. 2020, 2020.
[23] A. Tavlintsev, A. Pazderin, O. Malozemova, and P. Chusovitin, “Identification of static polynomial load model based on remote metering systems information,” 2013 13th Int. Conf. Environ. Electr. Eng. EEEIC 2013 - Conf. Proc., no. 3, pp. 213–216, 2013, doi: 10.1109/EEEIC-2.2013.6737910.
[24] C. A. Baone, S. Veda, Y. Pan, W. Premerlani, J. Dai, and A. Johnson, “Measurement based static load model identification,” IEEE Power Energy Soc. Gen. Meet., vol. 2015-Septe, 2015, doi: 10.1109/PESGM.2015.7285681.
[25] Y. Ge, A. J. Flueck, D. K. Kim, J. B. Ahn, J. D. Lee, and D. Y. Kwon, “An Event-Oriented Method for Online Load Modeling Based on Synchrophasor Data,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 2060–2068, 2015, doi: 10.1109/TSG.2015.2405920.
[26] T. A. Papadopoulos, G. A. Barzegkar-Ntovom, V. C. Nikolaidis, P. N. Papadopoulos, and G. M. Burt, “Online parameter identification and generic modeling derivation of a dynamic load model in distribution grids,” 2017 IEEE Manchester PowerTech, Powertech 2017, no. 1, pp. 4–9, 2017, doi: 10.1109/PTC.2017.7980994.
[27] A. S. Carneiro, L. F. Araujo, J. L. R. Pereira, P. A. N. Garcia, I. D. Melo, and M. B. Amaral, “Static load modeling based on field measurements,” 2017 IEEE Manchester PowerTech, Powertech 2017, no. 6, 2017, doi: 10.1109/PTC.2017.7981230.
[28] J. Zhao, Z. Wang, and J. Wang, “Robust Time-Varying Load Modeling for Conservation Voltage Reduction Assessment,” IEEE Trans. Smart Grid, vol. 9, no. 4, pp. 3304–3312, 2018, doi: 10.1109/TSG.2016.2630027.
[29] H. Ren, N. N. Schulz, V. Krishnan, and Y. Zhang, “Online Static Load Model Estimation in Distribution Systems,” IEEE Int. Symp. Ind. Electron., vol. 2019-June, pp. 153–158, 2019, doi: 10.1109/ISIE.2019.8781530.
[30] M. M. Ahmed, M. K. Hasanl, and N. S. F. Yusoff, Dynamic load modeling and parameter estimation of 132/275kv using pmu-based wide area measurement system, vol. 1166. Springer Singapore, 2021.
[31] H. Guo, K. Rudion, H. Abildgaard, P. Komarnicki, and Z. A. Styczynski, “Parameter estimation of dynamic load model using field measurement data performed by OLTC operation,” IEEE Power Energy Soc. Gen. Meet., pp. 1–7, 2012, doi: 10.1109/PESGM.2012.6345563.
[32] S. Son et al., “Improvement of composite load modeling based on parameter sensitivity and dependency analyses,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 242–250, 2014, doi: 10.1109/TPWRS.2013.2281455.
[33] E. Polykarpou and E. Kyriakides, “Parameter estimation for measurement-based load modeling using the Levenberg-Marquardt algorithm,” Proc. 18th Mediterr. Electrotech. Conf. Intell. Effic. Technol. Serv. Citizen, MELECON 2016, no. April, pp. 18–20, 2016, doi: 10.1109/MELCON.2016.7495363.
[34] I. F. Visconti, L. F. W. De Souza, J. M. D. S. C. Costa, N. R. D. B. C. Sobrinho, and N. S. Macedo, “From power quality monitoring to transient stability analysis: Measurement-based load modeling for dynamic simulations,” ICHQP 2010 - 14th Int. Conf. Harmon. Qual. Power, 2010, doi: 10.1109/ICHQP.2010.5625489.
[35] P. Regulski, F. Gonzalez-Longatt, and V. Terzija, “Estimation of load model parameters from instantaneous voltage and current,” IEEE Int. Conf. Fuzzy Syst., no. 1, pp. 164–169, 2011, doi: 10.1109/FUZZY.2011.6007609.
[36] I. F. Visconti, D. A. Lima, J. M. C. De Sousa Costa, and N. R. D. B. C. Sobrinho, “Measurement-based load modeling using transfer functions for dynamic simulations,” IEEE Trans. Power Syst., vol. 29, no. 1, pp. 111–120, 2014, doi: 10.1109/TPWRS.2013.2279759.
[37] X. Tian, X. Lii, L. Zhao, Z. Tan, S. Luo, and C. Li, “Simplified Identification Strategy of Load Model Based on Global Sensitivity Analysis,” IEEE Access, vol. 8, pp. 131545–131552, 2020, doi: 10.1109/ACCESS.2020.3007639.
[38] K. Fungyai, N. Sangmeg, A. Pichetjamroen, S. Dechanupaprittha, and N. Somakettarin, “Determination of ZIP Load Model Parameters based on Synchrophasor Data by Genetic Algorithm,” 2020 8th Int. Electr. Eng. Congr. iEECON 2020, pp. 3–6, 2020, doi: 10.1109/iEECON48109.2020.229509.
[39] L. Rodriguez-Garcia, S. Perez-Londono, and J. Mora-Florez, “Particle swarm optimization applied in power system measurement-based load modeling,” 2013 IEEE Congr. Evol. Comput. CEC 2013, pp. 2368–2375, 2013, doi: 10.1109/CEC.2013.6557852.
[40] P. Regulski, D. S. Vilchis-Rodriguez, S. Djurović, and V. Terzija, “Estimation of Composite Load Model Parameters Using an Improved Particle Swarm Optimization Method,” IEEE Trans. Power Deliv., vol. 30, no. 2, pp. 553–560, 2015, doi: 10.1109/TPWRD.2014.2301219.
[41] K. Wang, H. Huang, and C. Zang, “Research on time-sharing ZIP load modeling based on linear BP network,” Proc. - 2013 5th Int. Conf. Intell. Human-Machine Syst. Cybern. IHMSC 2013, vol. 1, pp. 37–41, 2013, doi: 10.1109/IHMSC.2013.16.
[42] Z. Liu, Z. Wang, and M. Su, “Dynamic load modeling based on extreme learning machine,” Appl. Mech. Mater., vol. 195–196, pp. 1043–1048, 2012, doi: 10.4028/www.scientific.net/AMM.195-196.1043.
[43] R. J. Park, K. Bin Song, and K. Lee, “The Load Model Composition Method in Power Systems Using Artificial Neural Network,” J. Electr. Eng. Technol., vol. 15, no. 2, pp. 519–526, 2020, doi: 10.1007/s42835-019-00335-2.
[44] A. Rouhani and A. Abur, “Real-Time Dynamic Parameter Estimation for an Exponential Dynamic Load Model,” IEEE Trans. Smart Grid, vol. 7, no. 3, pp. 1530–1536, 2016, doi: 10.1109/TSG.2015.2449904.
[45] E. O. Kontis, T. A. Papadopoulos, A. I. Chrysochos, and G. K. Papagiannis, “Measurement-Based dynamic load modeling using the vector fitting technique,” IEEE Trans. Power Syst., vol. 33, no. 1, pp. 338–351, 2018, doi: 10.1109/TPWRS.2017.2697004.
[46] W. Liang, X., He, Y., Mitolo, M., Li, “Support Vector Machine Based Dynamic Load Model Using Synchrophasor Data,” Conf. Rec. - Ind. Commer. Power Syst. Tech. Conf., pp. 1–11, 2018.
[47] Y. Wang, C. Lu, X. Zhang, H. Huang, and Y. Su, “Decision tree based validation of load model parameters,” IEEE Power Energy Soc. Gen. Meet., vol. 2016-Novem, 2016, doi: 10.1109/PESGM.2016.7741612.
[48] Q. Chen, P. Ju, K. Q. Shi, Y. Tang, Z. Y. Shao, and W. Y. Yang, “Parameter estimation and comparison of the load models with considering distribution network directly or indirectly,” Int. J. Electr. Power Energy Syst., vol. 32, no. 9, pp. 965–968, 2010, doi: 10.1016/j.ijepes.2010.02.009.
[49] M. G. Jahromi, S. D. Mitchell, G. Mirzaeva, and D. Gay, “A New Method for Power System Load Modeling Using a Nonlinear System Identification Estimator,” IEEE Trans. Ind. Appl., vol. 52, no. 4, pp. 3535–3542, 2015, doi: 10.1109/TIA.2016.2539125.
[50] V. Vignesh, S. Chakrabarti, and S. C. Srivastava, “Classification and modelling of loads in power systems using SVM and optimization approach,” IEEE Power Energy Soc. Gen. Meet., vol. 2015-Septe, pp. 1–5, 2015, doi: 10.1109/PESGM.2015.7285917.
[51] X. Zhang et al., “Ambient signal based load model parameter identification using optimization method,” IEEE Power Energy Soc. Gen. Meet., vol. 2015-Septe, 2015, doi: 10.1109/PESGM.2015.7285620.
[52] S. Guo and T. J. Overbye, “A maximum a-posteriori based algorithm for dynamic load model parameter estimation,” 2015 IEEE Int. Conf. Smart Grid Commun. SmartGridComm 2015, pp. 428–433, 2016, doi: 10.1109/SmartGridComm.2015.7436338.
[53] V. Vignesh, S. Chakrabarti, and S. C. Srivastava, “Load Modeling under Unbalanced Disturbances,” IEEE Trans. Power Syst., vol. 31, no. 2, pp. 1661–1662, 2016, doi: 10.1109/TPWRS.2015.2412695.
[54] A. Gaikwad, P. Markham, and P. Pourbeik, “Implementation of the WECC Composite Load Model for utilities using the component-based modeling approach,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., vol. 2016-July, pp. 0–4, 2016, doi: 10.1109/TDC.2016.7520081.
[55] P. Ju, C. Qin, F. Wu, H. Xie, and Y. Ning, “Load modeling for wide area power system,” Int. J. Electr. Power Energy Syst., vol. 33, no. 4, pp. 909–917, 2011, doi: 10.1016/j.ijepes.2010.12.030.
[56] J. Kim, S. Member, K. An, S. Member, and J. Ma, “Fast and Reliable Estimation of Composite Load Model Parameters Using Analytical Similarity of Parameter Sensitivity,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 663–671, 2016.
[57] K. Tray, P. Cicilio, T. Brekken, and E. Cotilla-Sanchez, “Dynamic composite load signature detection and classification using supervised learning over disturbance data,” 2017 IEEE Energy Convers. Congr. Expo. ECCE 2017, vol. 2017-Janua, pp. 1560–1566, 2017, doi: 10.1109/ECCE.2017.8095977.
[58] E. O. Kontis, I. S. Skondrianos, T. A. Papadopoulos, A. I. Chrysochos, and G. K. Papagiannis, “Generic dynamic load models using artificial neural networks,” 2017 52nd Int. Univ. Power Eng. Conf. UPEC 2017, vol. 2017-Janua, pp. 1–6, 2017, doi: 10.1109/UPEC.2017.8231937.
[59] S. Li, X. Liang, and W. Xu, “Dynamic load modeling for industrial facilities using template and PSS/E composite load model structure CLOD,” 2017 IEEE/IAS 53rd Ind. Commer. Power Syst. Tech. Conf. I CPS 2017, pp. 1–9, 2017, doi: 10.1109/ICPS.2017.7945123.
[60] D. A. Maldonado, V. Patel, M. Anitescu, and A. Flueck, “A statistical approach to dynamic load modelling and identification with high frequency measurements,” IEEE Power Energy Soc. Gen. Meet., vol. 2018-Janua, pp. 1–5, 2018, doi: 10.1109/PESGM.2017.8273809.
[61] Tushar, S. Pandey, A. K. Srivastava, P. Markham, and M. Patel, “Online Estimation of Steady-State Load Models Considering Data Anomalies,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 712–721, 2018, doi: 10.1109/TIA.2017.2753719.
[62] A. J. Collin, I. Hernando-Gil, J. L. Acosta, and S. Z. Djokic, “An 11 kV steady state residential aggregate load model. Part 1: Aggregation methodology,” 2011 IEEE PES Trondheim PowerTech Power Technol. a Sustain. Soc. POWERTECH 2011, pp. 1–8, 2011, doi: 10.1109/PTC.2011.6019381.
[63] Y. Zhu and J. V. Milanović, “Automatic Identification of Power System Load Models Based on Field Measurements,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3162–3171, 2018, doi: 10.1109/TPWRS.2017.2763752.
[64] Y. Tang, L. Zhu, J. Ning, and Q. Wang, “A data-driven approach for online aggregated load modeling through intelligent terminals,” Int. J. Distrib. Sens. Networks, vol. 15, no. 1, 2019, doi: 10.1177/1550147719825996.
[65] G. J. N. Gomes, F. R. Lemes, and E. P. T. Cari, “Load Model Identification Through a Hybrid Approach,” 2019 IEEE Can. Conf. Electr. Comput. Eng. CCECE 2019, no. 1, pp. 1–4, 2019, doi: 10.1109/CCECE.2019.8861787.
[66] H. Fan, T. Zhang, H. Yu, and G. Geng, “Identifying ZIP Coefficients of Aggregated Residential Load Model Using AMI Data,” Proc. 2019 IEEE 3rd Int. Electr. Energy Conf. CIEEC 2019, pp. 1660–1663, 2019, doi: 10.1109/CIEEC47146.2019.CIEEC-2019582.
[67] Y. Wang, C. Lu, and X. Zhang, “K-medoids based typical load model parameter extraction method,” 2019 Int. Conf. Smart Grid Synchronized Meas. Anal. SGSMA 2019, 2019, doi: 10.1109/SGSMA.2019.8784547.
[68] A. V. Pankratov, N. L. Batseva, E. S. Polyakova, A. S. Tavlintsev, I. L. Lapatin, and I. Y. Lipnitskiy, “Application of expectation maximization algorithm for measurement-based power system load modeling,” 2019 Int. Sib. Conf. Control Commun. SIBCON 2019 - Proc., pp. 1–5, 2019, doi: 10.1109/SIBCON.2019.8729610.
[69] Y. Wang, C. Lu, and X. Zhang, “Applicability comparison of different algorithms for ambient signal based load model parameter identification,” Int. J. Electr. Power Energy Syst., vol. 111, no. November 2018, pp. 382–389, 2019, doi: 10.1016/j.ijepes.2019.03.061.
[70] C. Zheng, S. Wang, Y. Liu, and C. Liu, “A novel RNN based load modelling method with measurement data in active distribution system,” Electr. Power Syst. Res., vol. 166, no. September 2018, pp. 112–124, 2019, doi: 10.1016/j.epsr.2018.09.006.
[71] C. Wang, Z. Wang, J. Wang, and D. Zhao, “Robust Time-Varying Parameter Identification for Composite Load Modeling,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 967–979, 2019, doi: 10.1109/TSG.2017.2756898.
[72] S. Han, “Three-phase-measurement-based load modeling technique using unbalanced fault data,” IEEE Access, vol. 8, pp. 83655–83662, 2020, doi: 10.1109/ACCESS.2020.2992369.
[73] R. F. Yuan, Q. Ai, and X. He, “Research on dynamic load modelling based on power quality monitoring system,” IET Gener. Transm. Distrib., vol. 7, no. 1, pp. 46–51, 2013, doi: 10.1049/iet-gtd.2012.0365.
[74] S. Bian, Z. Wang, N. Ji, X. Chu, Z. Du, and Q. Yin, “Input interaction and output fusion of adaptive interacting multiple load modeling,” Int. J. Electr. Power Energy Syst., vol. 117, no. September 2019, 2020, doi: 10.1016/j.ijepes.2019.105674.
[75] E. S. N. R. Paidi, A. Nechifor, M. M. Albu, J. Yu, and V. Terzija, “Development and Validation of a New Oscillatory Component Load Model for Real-Time Estimation of Dynamic Load Model Parameters,” IEEE Trans. Power Deliv., vol. 35, no. 2, pp. 618–629, 2020, doi: 10.1109/TPWRD.2019.2918059.
[76] Y. Lin, Y. Wang, J. Wang, S. Wang, and D. Shi, “Global Sensitivity Analysis in Load Modeling via Low-Rank Tensor,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2737–2740, 2020, doi: 10.1109/TSG.2020.2978769.
[77] X. Wang, Y. Wang, D. Shi, J. Wang, and Z. Wang, “Two-Stage WECC Composite Load Modeling: A Double Deep Q-Learning Networks Approach,” IEEE Trans. Smart Grid, vol. 11, no. 5, pp. 4331–4344, 2020, doi: 10.1109/TSG.2020.2988171.
[78] X. Liang, W. Xu, C. Y. Chung, W. Freitas, and K. Xiong, “Dynamic load models for industrial facilities,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 69–80, 2012, doi: 10.1109/TPWRS.2011.2161781.
[79] X. Zhang, C. Lu, and Y. Wang, “A two-stage framework for ambient signal based load model parameter identification,” Int. J. Electr. Power Energy Syst., vol. 121, no. March, p. 106064, 2020, doi: 10.1016/j.ijepes.2020.106064.
[80] X. Liang and C. Y. Chung, “Bus-split algorithm for aggregation of induction motors and synchronous motors in dynamic load modeling,” IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 2115–2126, 2014, doi: 10.1109/TIA.2013.2282967.
[81] D. Folliot, G. Delille, and L. Capely, “Load modeling for power system simulation: A tradeoff between accuracy and usability,” 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, 2013, doi: 10.1109/PTC.2013.6652461.
[82] A. A. Rahim, M. F. Hashim, and M. F. Mohd Siam, “Dynamic load modelling based on power quality recorder data,” Proc. 2013 IEEE 7th Int. Power Eng. Optim. Conf. PEOCO 2013, no. June, pp. 119–123, 2013, doi: 10.1109/PEOCO.2013.6564527.
[83] X. Zhang, S. Grijalva, and M. J. Reno, “A time-variant load model based on smart meter data mining,” IEEE Power Energy Soc. Gen. Meet., vol. 2014-Octob, no. October, 2014, doi: 10.1109/PESGM.2014.6939365.
[84] V. Vignesh, S. Chakrabarti, and S. C. Srivastava, “An experimental study on the load modelling using PMU measurements,” Proc. IEEE Power Eng. Soc. Transm. Distrib. Conf., pp. 1–5, 2014, doi: 10.1109/tdc.2014.6863487.
[85] L. Li, K. Ota, and M. Dong, “When Weather Matters: IoT-Based Electrical Load Forecasting for Smart Grid,” IEEE Commun. Mag., vol. 55, no. 10, pp. 46–51, 2017, doi: 10.1109/MCOM.2017.1700168.

Artículos similares

<< < 1 2 3 4 

También puede {advancedSearchLink} para este artículo.