Optimización de Costos de Producción con el Uso Programación Lineal Entera en la Planeación de la Producción para el Control de Inventario de Materias Primas
Optimization of Production Costs Using Integer Linear Programming in Production Planning for Raw Material Inventory Control
Cómo citar
Descargar cita
Mostrar biografía de los autores
Artículos similares
- Cristian Cuji, Diego Polanco , Estimación Del Tiempo De Recuperación De Energía Aplicado En Producción De Hidrogeno Con Fines De Generación Eléctrica , Revista Técnica "energía": Vol. 18 Núm. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
- Diego Arias , Patricia Gavela, Walter Intriago, Subastas de Recursos Energéticos Distribuidos para Empresas Eléctricas de Distribución , Revista Técnica "energía": Vol. 18 Núm. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
- Diego Arias , Patricia Gavela, Jonathan Riofrio, Estado del Arte: Incentivos y Estrategias para la Penetración de Energía Renovable , Revista Técnica "energía": Vol. 18 Núm. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
- Nelson Granda, Jenny Monga, Cristian Barreno, Franklin Quilumba, Desarrollo de una estación meteorológica y una herramienta computacional para la evaluación de los recursos eólico y solar , Revista Técnica "energía": Vol. 18 Núm. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
- Jonathan Riofrio, Csaba Farkas, Auto – Conversores Sincrónicos: Emulación de Generadores Sincrónicos con Conversores para la Inyección de Inercia Virtual en Sistemas de Potencia de 60 Hz Considerando Auto-sincronización , Revista Técnica "energía": Vol. 18 Núm. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
- Isaac Simbaña, William Quitiaquez, José Estupiñán, Fernando Toapanta-Ramos, Leonidas Ramírez, Evaluación del rendimiento de una bomba de calor de expansión directa asistida por energía solar mediante simulación numérica del proceso de estrangulamiento en el dispositivo de expansión , Revista Técnica "energía": Vol. 19 Núm. 1 (2022): Revista Técnica "energía", Edición No. 19, ISSUE I
- Diego Echeverria Jurado, Carlos Jaramillo, Jorge Benítez, Jaime Cepeda, Hugo Arcos, Análisis del impacto de las energías renovables no convencionales en la planificación operativa de largo plazo del Sistema Nacional Interconectado utilizando la plataforma SimSEE , Revista Técnica "energía": Vol. 19 Núm. 1 (2022): Revista Técnica "energía", Edición No. 19, ISSUE I
- Lisseth Jami, Catalina Vallejo, Francis Vásquez, Luis Condo, Luis Godoy, Metodología de asociación de información catastral y eléctrica mediante herramientas SIG y SQL: Caso de estudio Quito, Ecuador , Revista Técnica "energía": Vol. 19 Núm. 1 (2022): Revista Técnica "energía", Edición No. 19, ISSUE I
- Carlos Lozada, David Panchi, Implementación de Hardware In The Loop para el Análisis de Escenarios de Control de Frecuencia en una Microrred Utilizando WAMS , Revista Técnica "energía": Vol. 19 Núm. 2 (2023): Revista Técnica "energía", Edición No. 19, ISSUE II
- Cristopher Izquierdo, Braulio Pezántes, Edy Ayala, Predicción de la Dosis Óptima de Policloruro de Aluminio para el Proceso de Coagulación en el Tratamiento de Agua Potable mediante Redes Neuronales Artificiales , Revista Técnica "energía": Vol. 20 Núm. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
También puede Iniciar una búsqueda de similitud avanzada para este artículo.
Artículos más leídos del mismo autor/a
- Kleber Zhañay, Cristian Leiva, Erika Pilataxi, William Quitiaquez, Modelo de Correlación Desgaste - Cantidad de Sedimentos para la Programación de Mantenimiento Preventivo de una central Hidroeléctrica , Revista Técnica "energía": Vol. 21 Núm. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
El presente estudio propone una metodología de reducción de costos en los procesos de fabricación de cuerpos de grifería sanitaria, basada en un modelo de programación lineal entera (PLE) que optimiza la planeación de la producción manteniendo el control de inventarios dentro de límites establecidos. El modelo integra restricciones económicas, logísticas y ambientales, como cupos de importación, capacidad de producción y reutilización de chatarra de latón generada en operaciones de mecanizado. Mediante la implementación del modelo en el lenguaje R y el paquete lpSolve, se determinó la combinación óptima de materias primas —lingotes vírgenes, varilla y material reciclado— para cada lote de producto, minimizando los costos de producción bajo condiciones de disponibilidad de material y almacenamiento. Los resultados evidenciaron un ahorro acumulado de 73 341 USD durante seis meses consecutivos y la reducción del inventario promedio de material para fundir de 116 t a 62 t, demostrando la efectividad del modelo para una producción sostenible. La metodología propuesta es escalable a otros contextos manufactureros con múltiples rutas o restricciones de suministro
Visitas del artículo 12 | Visitas PDF 7
Descargas
- [1] S. S. Chauhan and P. Kotecha, “An efficient multi-unit production planning strategy based on continuous variables,” Applied Soft Computing Journal, vol. 68, pp. 458–477, 2018, doi: 10.1016/j.asoc.2018.03.012.
- [2] G. Bayá, P. Sartor, F. Robledo, E. Canale, and S. Nesmachnow, A Case Study of Smart Industry in Uruguay: Grain Production Facility Optimization, vol. 1555 CCIS. 2022. doi: 10.1007/978-3-030-96753-6_8.
- [3] J. I. P. Rave and G. P. J. Álvarez, “Application of mixed-integer linear programming in a car seat assembling process,” Pesquisa Operacional, vol. 31, no. 3, pp. 593–610, 2011, doi: 10.1590/S0101-74382011000300011.
- [4] F. Dianawati and H. Fatoni, “Determining the optimal inventory holding time using mixed integer linear programming (MILP) in a forwarder company,” in AIP Conference Proceedings, 2024. doi: 10.1063/5.0242084.
- [5] J. M. Izar Landeta, C. B. Ynzunza Cortés, and O. Guarneros García, “Variabilidad de la demanda del tiempo de entrega, existencias de seguridad y costo del inventario,” Contaduria y Administracion, vol. 61, no. 3, pp. 499–513, Jul. 2016, doi: 10.1016/j.cya.2015.11.008.
- [6] A. Gholipoor, M. M. Paydar, and A. S. Safaei, “A faucet closed-loop sup-ply chain network design considering used faucet exchange plan,” J Clean Prod, vol. 235, pp. 503–518, Oct. 2019, doi: 10.1016/j.jclepro.2019.06.346.
- [7] J. Johansson, L. Ivarsson, J. E. Ståhl, V. Bushlya, and F. Schultheiss, “Hot Forging Operations of Brass Chips for Material Reclamation after Ma-chining Operations,” in Procedia Manufacturing, Elsevier B.V., 2017, pp. 584–592. doi: 10.1016/j.promfg.2017.07.152.
- [8] V. Agrawal, R. P. Mohanty, S. Agarwal, J. K. Dixit, and A. M. Agrawal, “Analyzing critical success factors for sustainable green supply chain management,” Environ Dev Sustain, vol. 25, no. 8, pp. 8233–8258, 2023, doi: 10.1007/s10668-022-02396-2.
- [9] A. Loibl and L. A. Tercero Espinoza, “Current challenges in copper recycling: aligning insights from material flow analysis with technological re-search developments and industry issues in Europe and North America,” Resour Conserv Recycl, vol. 169, Jun. 2021, doi: 10.1016/j.resconrec.2021.105462.
- [10] P. Asadi, M. Akbari, A. Armani, M. R. M. Aliha, M. Peyghami, and T. Sadowski, “Recycling of brass chips by sustainable friction stir extrusion,” J Clean Prod, vol. 418, no. June, p. 138132, 2023, doi: 10.1016/j.jclepro.2023.138132.
- [11] A. I. Kibzun and V. A. Rasskazova, “Linear Integer Programming Model as Mathematical Ware for an Optimal Flow Production Planning System at Operational Scheduling Stage,” Automation and Remote Control, vol. 84, no. 5, pp. 529–542, 2023, doi: 10.1134/S0005117923050065.
- [12] H. Su, N. Zhou, Q. Wu, Z. Bi, and Y. Wang, “Investigating price fluctuations in copper futures: Based on EEMD and Markov-switching VAR model,” Resources Policy, vol. 82, May 2023, doi: 10.1016/j.resourpol.2023.103518.
- [13] J. M. Izar Landeta, C. B. Ynzunza Cortés, and E. Zermeño Pérez, “Calculation of reorder point when lead time and demand are correlated,” Contaduria y Administracion, vol. 60, no. 4, pp. 864–873, Oct. 2015, doi: 10.1016/j.cya.2015.07.003.
- [14] Patrão, R. L., & Napoleone, A. (2024). Decision Making under Uncertainty for Reconfigurable Manufacturing Systems: A framework for uncertainty representation. IFAC-PapersOnLine, 58(19), 103–108. https://doi.org/10.1016/j.ifacol.2024.09.102
- [15] Napoleone, A., Andersen, A.-L., Brunoe, T. D., & Nielsen, K. (2023). Towards human-centric reconfigurable manufacturing systems: Literature review of reconfigurability enablers for reduced reconfiguration effort and classification frameworks. Journal of Manufacturing Systems, 67, 23–34. https://doi.org/10.1016/j.jmsy.2022.12.014
- [16] Barrera-Diaz, C. A., Nourmohammadi, A., Smedberg, H., Aslam, T., & Ng, A. H. C. (2023). An Enhanced Simulation-Based Multi-Objective Optimization Approach with Knowledge Discovery for Reconfigurable Manufacturing Systems. Mathematics, 11(6). https://doi.org/10.3390/math11061527
- [17] Ang, C. W., Yahaya, S. H., Salleh, M. S., & Cahyadi, N. (2025). A Comprehensive Review of Different Approaches used by Manufacturing Industries in Handling Capacity Planning under Demand Uncertainties. Journal of Advanced Research in Applied Sciences and Engineering Technology, 50(1), 88–106. https://doi.org/10.37934/araset.50.1.88106
- [18] Moghaddam, S. K., Houshmand, M., Saitou, K., & Fatahi Valilai, O. (2020). Configuration design of scalable reconfigurable manufacturing systems for part family. International Journal of Production Research, 58(10), 2974–2996. https://doi.org/10.1080/00207543.2019.1620365
- [19] Imseitif, J., & Nezamoddini, N. (2020). Macro and micro-production planning for reconfigurable manufacturing systems. Proceedings of the 2020 IISE Annual Conference, 784–789.
- [20] Gainanov, D. N., Berenov, D. A., Nikolaev, E. A., & Rasskazova, V. A. (2022). Integer Linear Programming in Solving an Optimization Problem at the Mixing Department of the Metallurgical Production. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics): Vol. 13621 LNCS. https://doi.org/10.1007/978-3-031-24866-5_12
- [21] Rasskazova, V. A. (2024). LIP Model in Solving RCPSP at the Flow Type Production. In Communications in Computer and Information Science: Vol. 1913 CCIS. https://doi.org/10.1007/978-3-031-48751-4_6
- [22] Angizeh, F., Montero, H., Vedpathak, A., & Parvania, M. (2020). Optimal production scheduling for smart manufacturers with application to food production planning. Computers and Electrical Engineering, 84. https://doi.org/10.1016/j.compeleceng.2020.106609
- [23] Coronado-Hernandez, J. R., de la Hoz, L., Leyva, J., Ramos, M., & Zapatero, O. (2020). Linear programming model to minimize the production costs of an adhesive tape company | Modelo programación lineal para minimizar los costos de producción de una empresa de cintas adhesivas. Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology. https://doi.org/10.18687/LACCEI2020.1.1.369
- [24] Vanli, A. S., & Karas, M. H. (2025). Material and Process Modification to Improve Manufacturability of Low-Lead Copper Alloys by Low-Pressure Die Casting Method. Metals, 15(2). https://doi.org/10.3390/met15020205
- [25] Ying, K.-C., Lin, S.-W., Pourhejazy, P., & Lee, F.-H. (2025). Production scheduling of additively manufactured metal parts. CIRP Journal of Manufacturing Science and Technology, 57, 100–115. https://doi.org/10.1016/j.cirpj.2025.01.005
- [26] Yang, Z., & Liu, S. (2025). Fairness-oriented multi-objective optimization of supply chain planning under uncertainties. Socio-Economic Planning Sciences, 99. https://doi.org/10.1016/j.seps.2025.102198








