Short-Term Prediction of Smart Metering Systems by Multivariable and Multistep Deep Learning Architectures
Predicción a corto plazo de sistemas de medición inteligentes mediante arquitecturas de aprendizaje profundo multivariable y multipaso
How to Cite
Download Citation
Show authors biography
Similar Articles
- José Castro, Paúl Soto, Ruth Reategui, Tuesman Castillo, Partitioning of an Electrical Distribution Systems Using K-Means and DBSCAN Clustering Algorithms , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Alex Mullo, José Reinoso, Marlon Chamba, Carlos Lozada, Analysis and Characterization of Power Quality using Data Mining , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Diego Jiménez, Jhoao Rea, Pablo Muñoz, Gabriela Vizuete, Leonel Latacunga, Ciro Iza, Design and Construction of a Home Digital Energy Meter , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Edison Novoa, Gabriel Salazar Yépez, Eliana Buitrón, Gabriel Salazar Pérez, Methodological Proposal for Targeting Electric Subsidy "Tarifa De La Dignidad" in Residential Users of the Electric Companies of Ecuador , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Jorge Leon, Graciela Colomé, Estefanía Tapia, Identification of Critical Generators in Transient Stability Problems , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Sasha Palacios, Ecuadorian National Interconnected System (SNI) Using the Equal Area Criterion and Synchrophasor Measurements , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Flavio Villacrés, Alexis Torres, Marlon Chamba, Carlos Lozada, Adaptive Load Shedding Strategy for Power Systems Based on Linear Regression , Revista Técnica "energía": Vol. 22 No. 1 (2025): Revista Técnica "energía", Edición No. 22, ISSUE I
- Julio Lascano, Luis Chiza, Roberth Saraguro, Carlos Quinatoa, Jessy Tapia, Demand Estimation for an Electric Vehicles Charging Station Through the Application of Probabilistic Methods , Revista Técnica "energía": Vol. 20 No. 1 (2023): Revista Técnica "energía", Edición No. 20, ISSUE I
- Andrés Pereira, Roberth Saraguro, Carlos Quinatoa, Evaluation of Active Power Losses in the Electrical System of the Empresa Eléctrica Quito (EEQ) Applying an Optimization Algorithm , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
- Armando Freire, Fernando Arias, Héctor Mullo, Jhonny Casa, Implementation of Remote Control for the Opening and Closing of Reactive Compensation to the 13,8 kV Feeder of the Electrical Substation of Novacero S.A. by means of an ADVC-IOEX Card , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
You may also start an advanced similarity search for this article.
Most read articles by the same author(s)
- Joffre Constante, Graciela Colomé, State-of-the-Art and Trends on Load Modeling , Revista Técnica "energía": Vol. 18 No. 2 (2022): Revista Técnica "energía", Edición No. 18, ISSUE II
- Luis Lechón , Mauricio Samper, Gustavo Barón, Application for technical evaluation of the "Distributed Generation Hosting Capacity" in electrical distribution networks , Revista Técnica "energía": Vol. 17 No. 2 (2021): Revista Técnica "energía", Edición No. 17, ISSUE II
- Jorge Leon, Graciela Colomé, Estefanía Tapia, Identification of Critical Generators in Transient Stability Problems , Revista Técnica "energía": Vol. 21 No. 2 (2025): Revista Técnica "energía", Edición No. 21, ISSUE II
- Omar Ramos, Graciela Colomé, Determination of oscillatory modes in the SADI from the analysis of PMU measurements of ambient data in Low Voltage , Revista Técnica "energía": Vol. 18 No. 1 (2021): Revista Técnica "energía", Edición No. 18, ISSUE I
- Graciela Colomé, Omar Ramos, Diego Echeverría, Identification Methodology of Oscillatory Modes in PMU Measurement Ambient Type Data , Revista Técnica "energía": Vol. 21 No. 1 (2024): Revista Técnica "energía", Edición No. 21, ISSUE I
Smart Grids have revolutionized the electricity industry by enabling more efficient control and monitoring of the electricity supply, with a key component being smart meters (SM). These collect information on demand, energy, and harmonic distortion, among others, which must be stored and managed efficiently in a metering data management system (MDMS). The MDMS must ensure that a complete set of data is obtained for use in algorithms to ensure the reliability and quality of the power supply. To address the challenge of management the big data generated by SM, short, medium, and long-term measurement forecasting techniques have been proposed, highlighting the use of artificial intelligence such as Artificial Neural Networks (ANN) and Deep Learning (DL) methods due to their ability to adapt to different input and output variables with various time horizons. In addition, the influence of the diversity of Information and Communication Technologies (ICT) on the update time and data storage in the MDMS is highlighted. In this sense, this work aims to identify which ANN or DL architecture(s) could be more suitable for enterprise, survey, or research applications, demonstrating favorable performance metrics in different scenarios of sampling frequency and typical data update times in Smart Grids. This is relevant due to the need for MDMS to perform multivariate and multi-pass predictions in the short term to complete the information until the information is available or updated.
Article visits 1063 | PDF visits 337
Downloads
- Y. Kabalci, “A survey on smart metering and smart grid communication,” Renew. Sustain. Energy Rev., vol. 57, pp. 302–318, May 2016, doi: 10.1016/j.rser.2015.12.114.
- S. Chakraborty, S. Das, T. Sidhu, and A. K. Siva, “Smart meters for enhancing protection and monitoring functions in emerging distribution systems,” Int. J. Electr. Power Energy Syst., vol. 127, no. November 2020, p. 106626, May 2021, doi: 10.1016/j.ijepes.2020.106626.
- Y. Wang, Q. Chen, T. Hong, and C. Kang, “Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 3125–3148, May 2019, doi: 10.1109/TSG.2018.2818167.
- M. H. Rashid, “AMI Smart Meter Big Data Analytics for Time Series of Electricity Consumption,” in 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), IEEE, 2018, pp. 1771–1776. doi: 10.1109/TrustCom/BigDataSE.2018.00267.
- F. Dewangan, A. Y. Abdelaziz, and M. Biswal, “Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review,” Energies, vol. 16, no. 3, p. 1404, Jan. 2023, doi: 10.3390/en16031404.
- I. K. Nti, M. Teimeh, O. N. Boateng, and A. F. Adekoya, “Electricity load forecasting : a systematic review,” J. Electr. Syst. Inf. Technol., vol. 8, 2020, doi: 10.1186/s43067-020-00021-8.
- H. Habbak, M. Mahmoud, K. Metwally, M. M. Fouda, and M. I. Ibrahem, “Load Forecasting Techniques and Their Applications in Smart Grids,” Energies, vol. 16, no. 3. p. 1480, Feb. 02, 2023. doi: 10.3390/en16031480.
- K. E. ArunKumar, D. V. Kalaga, C. Mohan Sai Kumar, M. Kawaji, and T. M. Brenza, “Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends,” Alexandria Eng. J., vol. 61, no. 10, pp. 7585–7603, Oct. 2022, doi: 10.1016/j.aej.2022.01.011.
- M. T. Luong, H. Pham, and C. D. Manning, “Effective approaches to attention-based neural machine translation,” Conf. Proc. - EMNLP 2015 Conf. Empir. Methods Nat. Lang. Process., pp. 1412–1421, 2015, doi: 10.18653/v1/d15-1166.
- D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” 3rd Int. Conf. Learn. Represent. ICLR 2015 - Conf. Track Proc., pp. 1–5, 2015, doi: doi.org/10.48550/arXiv.1409.0473.
- J. Li, Z. Tu, B. Yang, M. R. Lyu, and T. Zhang, “Multi-Head Attention with Disagreement Regularization,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Stroudsburg, PA, USA: Association for Computational Linguistics, 2018, pp. 2897–2903. doi: 10.18653/v1/D18-1317.
- A. M. Pirbazari, M. Farmanbar, A. Chakravorty, and C. Rong, “Short-term load forecasting using smart meter data: A generalization analysis,” Processes, vol. 8, no. 4, 2020, doi: 10.3390/PR8040484.
- I. Khatri, X. Dong, J. Attia, and L. Qian, “Short-term Load Forecasting on Smart Meter via Deep Learning,” 51st North Am. Power Symp. NAPS 2019, no. October 2021, 2019, doi: 10.1109/NAPS46351.2019.9000185.
- C. Tarmanini, N. Sarma, C. Gezegin, and O. Ozgonenel, “Short term load forecasting based on ARIMA and ANN approaches,” Energy Reports, vol. 9, pp. 550–557, May 2023, doi: 10.1016/j.egyr.2023.01.060.
- M. R. Hossain, A. M. T. Oo, and A. B. M. Shawkat Ali, “Evolution of smart grid and some pertinent issues,” in AUPEC 2010 - 20th Australasian Universities Power Engineering Conference: “Power Quality for the 21st Century,” 2010. [Online]. Available: https://ieeexplore.ieee.org/document/5710797
- H. Farhangi, “The path of the smart grid,” IEEE Power Energy Mag., vol. 8, no. 1, pp. 18–28, Jan. 2010, doi: 10.1109/MPE.2009.934876.
- B. Seal, “Advanced Metering Infrastructure (AMI) Considerations for Distributed Renewables Integration,” Knoxville, Tennessee 39032, 2009. [Online]. Available: https://www.epri.com/#/pages/product/1019585/
- M. Kuzlu, M. Pipattanasomporn, and S. Rahman, “Communication network requirements for major smart grid applications in HAN, NAN and WAN,” Comput. Networks, vol. 67, pp. 74–88, Jul. 2014, doi: 10.1016/j.comnet.2014.03.029.
- L. Hu, Z. Wang, X. Liu, A. V. Vasilakos, and F. E. Alsaadi, “Recent advances on state estimation for power grids with unconventional measurements,” IET Control Theory Appl., vol. 11, no. 18, pp. 3221–3232, Dec. 2017, doi: 10.1049/iet-cta.2017.0629.
- D. Syed, A. Zainab, A. Ghrayeb, S. S. Refaat, H. Abu-Rub, and O. Bouhali, “Smart Grid Big Data Analytics: Survey of Technologies, Techniques, and Applications,” IEEE Access, vol. 9, pp. 59564–59585, 2021, doi: 10.1109/ACCESS.2020.3041178.
- G. Dileep, “A survey on smart grid technologies and applications,” Renew. Energy, vol. 146, pp. 2589–2625, Feb. 2020, doi: 10.1016/j.renene.2019.08.092.
- S.-H. Kim, Z. W. Geem, and G.-T. Han, “Hyperparameter Optimization Method Based on Harmony Search Algorithm to Improve Performance of 1D CNN Human Respiration Pattern Recognition System,” Sensors, vol. 20, no. 13, p. 3697, Jul. 2020, doi: 10.3390/s20133697.
- H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P. A. Muller, “Deep learning for time series classification: a review,” Data Min. Knowl. Discov., vol. 33, no. 4, pp. 917–963, Jul. 2019, doi: 10.1007/s10618-019-00619-1.
- A. Casolaro, V. Capone, G. Iannuzzo, and F. Camastra, “Deep Learning for Time Series Forecasting: Advances and Open Problems,” Information, vol. 14, no. 11, p. 598, Nov. 2023, doi: 10.3390/info14110598.
- Z. Zhang and Y. Dong, “Temperature Forecasting via Convolutional Recurrent Neural Networks Based on Time-Series Data,” Complexity, vol. 2020, pp. 1–8, Mar. 2020, doi: 10.1155/2020/3536572.
- C. Y. Yang, P. C. Chen, and W. C. Huang, “Cross-Domain Transfer of EEG to EEG or ECG Learning for CNN Classification Models,” Sensors, vol. 23, no. 5, p. 2458, Feb. 2023, doi: 10.3390/s23052458.
- K. Berahmand, F. Daneshfar, E. S. Salehi, Y. Li, and Y. Xu, “Autoencoders and their applications in machine learning: a survey,” Artif. Intell. Rev., vol. 57, no. 2, 2024, doi: 10.1007/s10462-023-10662-6.
- P. Li, Y. Pei, and J. Li, “A comprehensive survey on design and application of autoencoder in deep learning,” Appl. Soft Comput., vol. 138, 2023, doi: 10.1016/j.asoc.2023.110176.
- A. Almalaq and G. Edwards, “A review of deep learning methods applied on load forecasting,” in Proceedings - 16th IEEE International Conference on Machine Learning and Applications, ICMLA 2017, IEEE, Dec. 2017, pp. 511–516. doi: 10.1109/ICMLA.2017.0-110.
- J. F. Torres, D. Hadjout, A. Sebaa, F. Martínez-Álvarez, and A. Troncoso, “Deep Learning for Time Series Forecasting: A Survey,” Big Data, vol. 9, no. 1, pp. 3–21, Feb. 2021, doi: 10.1089/big.2020.0159.
- G. Hebrail and A. Berard, “Household Electric Power Consumption,” UCI Machine Learning Repository. [Online]. Available: https://doi.org/10.24432/C58K54















