Validation of a prototype of three-phase energy meter as support for an energy audit

Main Article Content

William Quitiaquez
https://orcid.org/0000-0001-9430-2082
Jorge Chimarro
John Valarezo
Patricio Quitiaquez
César Melendrez
https://orcid.org/0000-0001-8907-8418
Fernando Toapanta

Abstract

The increase in companies and the incessant productive growth of the different economic sectors have increased programs that contribute to the sustainable consumption of electrical energy, all in order to foster a culture of savings.


The use of standardized and calibrated tools is essential, with a constant monitoring of the various electrical parameters of the industry can be done.


The prototype has a STM32F7 as a microcontroller system for digital signal processing in real time, as well as the choice of voltage and current sensors for its correct functionality.


The prototype can rival with commercials meters since its range error in tests is minimal, being thus an error of 4.73, 8.82 and 3.08 % in active power of 2.05, 0.97 and 1.79% in apparent power and 7.69, 5.85 and 14.29% in reactive power.


With the results obtained, we conclude that the prototype is applicable, this being a viable and economical option for an energy audit, limited only by the number of prototypes that can be created for a possible solution for its application.

Downloads

Download data is not yet available.

Article Details

How to Cite
Quitiaquez, W., Chimarro, J., Valarezo, J., Quitiaquez, P., Melendrez, C. ., & Toapanta, F. (2021). Validation of a prototype of three-phase energy meter as support for an energy audit . Revista Técnica "energía", 17(2), PP. 133–142. https://doi.org/10.37116/revistaenergia.v17.n2.2021.442
Section
TECNOLÓGICOS E INNOVACIÓN

References

[1] J. López Hurtado, J. C. Arias Murillo, and E. A Quintero Salazar, “Interactive electronic energy meter for residential use,” Prospectiva, vol. 14, no. 1, pp. 61–72, 2016.
[2] M. Poveda, “Eficiencia energética: recurso no aprovechado,” OLADE. Quito, 2007.
[3] E. O’Driscoll and G. E. O’Donnell, “Industrial power and energy metering – a state-of-the-art review,” J. Clean. Prod., vol. 41, pp. 53–64, 2013, doi: https://doi.org/10.1016/j.jclepro.2012.09.046.
[4] J. John, “Top 5 Smart Grid Trends of 2014,” Greentech Media, 2014, [Online]. Available: https://www.greentechmedia.com/articles/read/top-smart-grid-trends-of-2014.
[5] M. Munsell, “US Solar-Plus-Storage Market to Surpass $1 Billion by 2018,” Greentech Media, 2014.
[6] B. Kellison and F. Wang, “What the Coming Wave of Distributed Energy Resources Means for the US Grid,” Greentech Media, 2020.
[7] Accenture, “Realizing the full potential of smart metering,” 2013.
[8] Z. Alliance, “Zigbee alliance,” WPAN Ind. group, http//www. zigbee. org/. Ind. Gr. responsible ZigBee Stand. Certif., pp. 1–2, 2010.
[9] Itrón, “Itrón.” https://www.itron.com/na.
[10] K. Parsons Jr, “Intelligent metering demand response.” Google Patents, Jun. 11, 2013.
[11] K. A. Nap, L. A. Ehrke, and D. R. Dresselhuys, “Automatic meter reading data communication system.” Google Patents, Jun. 12, 2001.
[12] P. Corral, B. Coronado, A. C. de C. Lima, and O. Ludwig, “Design of Automatic Meter Reading based on Zigbee,” IEEE Lat. Am. Trans., vol. 10, no. 1, pp. 1150–1155, 2012, doi: 10.1109/TLA.2012.6142452.
[13] L. Xian-chun, X. Yu-ling, and Z. Liang-qin, “Design of three-phase multi-purpose standard electric energy meter,” in 2011 International Conference on System science, Engineering design and Manufacturing informatization, 2011, vol. 1, pp. 263–266, doi: 10.1109/ICSSEM.2011.6081201.
[14] F. P. Analyzer, “1735 data sheet,” Fluke Corporation, 2006. https://dam-assets.fluke.com/s3fs-public/1735____umspa0200.pdf.
[15] E. P. Muñoz Saona and A. E. Vergara Reyes, “Desarrollo y aplicación de una guía para realizar auditorías energéticas en el sector industrial.” QUITO/EPN/2011, 2011.
[16] A. G. Ruiz, J. C. Galvis, and R. A. G. Rendón, “Solución al problema de balance de fases y reconfiguración de alimentadores primarios bajo un modelamiento trifásico usando simulated annealing.,” Sci. Tech., vol. 1, no. 30, pp. 37–42, 2006.
[17] STMicroelectronics, “32F746GDISCOVERY,” ST life.augmented. https://www.st.com/en/evaluation-tools/32f746gdiscovery.html (accessed Oct. 20, 2020).
[18] M. Á. Reyes Resta, “Programación de microcontroladores Cortex-M7 usando herramientas de generación de código para el sistema STM32F7 Discovery,” 2017.
[19] R. F. Coughlin and F. F. Driscoll, Amplificadores operacionales y circuitos integrados lineales. Pearson educacion, 1998.
[20] L. Beijing Yaohuadechang Electronic Co., “SCT-013,” ALLDATASHEET. https://html.alldatasheet.es/html-pdf/1155087/YHDC/SCT-013/111/1/SCT-013.html (accessed Oct. 20, 2020).
[21] C. O. Meléndrez Arévalo and J. W. Valarezo Pérez, “Diseño e implementación de un medidor de energía eléctrica trifásico como herramienta para una auditoría energética.” Quito, 2017., 2017.
[22] V. Fuster, L. Fort, and J. Sansano, “Consideraciones sobre la medida de la calidad de la energía eléctrica según la IEC 61000-4-30,” Zaragoza, vol. 11, no. 13, 2005.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.