Development of a weather station and a computational tool for the evaluation of wind and solar resources
Main Article Content
Abstract
This paper presents the design and implementation of a weather station and a computational tool for the evaluation of solar and wind resources. The weather station records the following variables: air temperature, relative humidity, solar irradiance, atmospheric pressure, altitude, latitude, longitude, wind speed and direction. An autonomous power supply through a photovoltaic system with energy storage has been also included.
The weather station transmits data in real time through an Arduino compatible Ethernet module and stores the weather measurements in a database created in MYSQL. The database is inside a XAMPP server installed on a personal computer. A web page created in PHP allows the visualization of the acquired variables in real time.
The meteorological variables obtained through the weather station are fed into a computer program developed in Python programming language, which allows determining the wind and solar potential of the area where the station is located. The results of this work serve as valuable information for the development of solar and wind generation projects.
Downloads
Article Details
Aviso de Derechos de Autor
La Revista Técnica "energía" está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
References
[2] G. Poveda-Burgos, K. Ruiz, J. González, “Desarrollo de energías renovables en el Ecuador del siglo XXI, optimización de recursos económicos y conservación del medio ambiente”, Revista Observatorio de la Economía Latinoamericana, Ecuador, julio, 2017. Available: http://www.eumed.net/cursecon/ecolat/ec/2017/energias-renovables-ecuador.html
[3] PROVIENTO. (2021). Estaciones Meteorológicas [online]. Available: https://proviento.com.ec/21-estaciones-meteorologicos. [Accessed: 05-nov-2021].
[4] J.A. Carta, R. Calero, A. Colmenar, and M. Castro, "Centrales de energías renovables. Generación eléctrica con energías renovables", 2nd. Ed., Madrid: Pearson Prentice Hall, 2013.
[5] W.A. Lozano-Rivas, “Construcción de estaciones meteorológicas”, Bogotá: Universidad Piloto de Colombia, 2013.
[6] ARDUINO. (2021). Arduino Mega 2560 Rev 3 [Online], Available at: https://store.arduino.cc/products/arduino-mega-2560-rev3. [Accessed: 05-nov-2021].
[7] DAVIS INSTRUMENTS. (2021). Anemometer for Weather Monitor or Wizard [Online]. Available at: https://www.davisinstruments.com/collections/add-on-sensors/products/anemometer-for-weather-monitor-or-wizard. [Accessed: 05-nov-2021]
[8] APOGEE INSTRUMENTS. (2021). SP-212-SS: Amplified 0-2.5 volt Pyranometer [Online]. Available at: https://www.apogeeinstruments.com/sp-212-ss-amplified-0-2-5-volt-pyranometer/#product-tab-description. [Accessed: 05-nov-2021].
[9] C. Uzquiano, M. Sullivan, X. Sandy, “Capacitación e instalación de sistemas fotovoltaicos en las comunidades de Carmen de Emero y Yolosani”, Wildlife Conservation Society (WCS), Bolivia, marzo, 2015.
[10] APACHEFRIENDS.ORG. (2021). XAMPP Apache + Maria DB + PHP + Perl [Online]. Available at: https://www.apachefriends.org/index.html. [Accessed: 05-nov-2021].
[11] Heinrich Härberlin, “Photovoltaics. System, Design and Practice”, United Kingdom: John Wiley & Sons, 2012.