Performance evaluation of a direct expansion solar-assisted heat pump by numerical simulation of the throttling process in the expansion device

Main Article Content

Isaac Simbaña
https://orcid.org/0000-0002-3324-3071
William Quitiaquez
https://orcid.org/0000-0001-9430-2082
José Estupiñán
https://orcid.org/0000-0003-2286-5737
Fernando Toapanta-Ramos
Leonidas Ramírez
https://orcid.org/0000-0003-2569-2974

Abstract

The performance evaluation of a direct expansion solar-assisted heat pump (DX-SAHP) was analyzed using numerical simulation about the throttling process in the expansion device. The experimental system operation parameters were validated by normality test with 95 % confidence. An E2V09SSF expansion valve was modeled for numerical analysis in the ANSYS software Fluent module. The best meshing of the valve generated 263524 elements and 50449 nodes with an excellent skewness metric of 0.2334. Refrigerant temperature and pressure were defined as boundary conditions at valve inlet, besides its velocity. Continuity, momentum and energy equations were used, considering a k-epsilon RNG model. The pressure values of the refrigerant at the expansion device outlet, obtained by simulation, were compared to experimental values that were determined in the DX-SAHP prototype system. The refrigerant pressure, obtained by simulation for a heating time of 0 to 40 minutes, was 161.61, 186.50 and 238.33 kPa. The absolute error between the experimental and simulated pressure was 4.07 kPa, while the relative error was less than 2 %.

Downloads

Download data is not yet available.

Article Details

How to Cite
Simbaña, I., Quitiaquez, W., Estupiñán, J., Toapanta-Ramos, F., & Ramírez, L. (2022). Performance evaluation of a direct expansion solar-assisted heat pump by numerical simulation of the throttling process in the expansion device . Revista Técnica "energía", 19(1), PP. 110–119. https://doi.org/10.37116/revistaenergia.v19.n1.2022.524
Section
EFICIENCIA ENERGÉTICA

References

[1] M. Casanovas-Rubio y J. Armengou, “Decision-making tool for the optimal selection of a domestic water-heating system considering economic, environmental and social criteria: Aplication to Barcelona (Spain),” Renewable and Sustainable Energy Reviews, vol. 91, pp. 741-753, 2018.
[2] L. Salgado-Conrado y A. Lopez-Montelongo, “Barriers and solutions of solar water heaters in Mexican household,” Solar Energy, vol. 188, pp. 831-838, 2019.
[3] X. Kong, M. Zhang, Y. Yang, Y. Li y D. Wang, “Comparative experimental analysis of direct-expansion solar-assisted heat pump water heaters using R134a and R290,” Solar Energy, vol. 203, pp. 187-196, 2020.
[4] J. Weian, C. Jingyong, J. Jie y H. Wenzhu, “Experimental study of a direct expansion solar-assisted heat pump (DX-SAHP) with finned-tube evaporator and comparison with conventional DX-SAHP,” Energy and Buildings, vol. 207, p. 109632, 2020.
[5] R. Ghoubali, P. Byrne y F. Bazantay, “Refrigerant charge optimisation for propane heat pump water heaters,” International Journal of Refrigeration, vol. 76, pp. 230-244, 2017.
[6] A. Badiei, Y. Akhlaghi, X. Zhao, S. Shittu, X. Xiao, J. Li, Y. Fan y G. Li, “A chronological review of advances in solar assisted heat pump technology in 21st century,” Renewable and Sustainable Energy Reviews, vol. 132, p. 110132, 2020.
[7] W. Duarte, S. Rabelo, T. Paulino, J. Pabon y L. Machado, “Experimental performance analysis of a CO2 direct-expansion solar assisted heat pump water heater,” International Journal of Refrigeration, vol. 125, pp. 52-63, 2021.
[8] X. Li, Y. Wang, M. Li, M. Hang, W. Zhao, D. Kong y G. Yin, “Performance testing of a heat pump system with auxiliary hot water under different ambient temperatures,” Energy and Built Environment, 2021.
[9] W. Huang, T. Zhang, J. Ji y N. Xu, “Numerical study and experimental validation of a direct-expansion solar-assisted heat pump for space heating under frosting conditions,” Energy & Buildings, vol. 185, pp. 224-238, 2019.
[10] M. Loska, J. Smolka, M. Haida, E. Kriezi y K. Banasiak, “CFD modelling of R410A flow through an expansion valve using equilibrium and modified relaxation models,” Applied Thermal Engineering, vol. 185, p. 116442, 2021.
[11] X. Kong, J. Li, B. Wang y Y. Li, “Numerical study of a direct-expansion solar-assisted heat pump water heater under frosting conditions based on experiments,” Solar Energy, vol. 196, pp. 10-21, 2020.
[12] B. Wang, X. Kong, X. Yan, Y. Shang y Y. Li, “Influence of subcooling on performance of direct-expansion solar-assisted heat pump,” International Journal of Refrigeration, vol. 122, pp. 201-209, 2021.
[13] X. Kong, S. Ma, T. Ma, Y. Li y X. Cong, “Mass flow rate prediction of direct-expansion solar-assisted heat pump using R290 based on ANN model,” Solar Energy, vol. 215, pp. 375-387, 2021.
[14] X. Kong, B. Wang, Y. Shang, J. Li y Y. Li, “Influence of different regulation modes of compressor speed on the performance of direct-expansion solar-assisted heat pump water heater,” Applied Thermal Engineering, vol. 169, pp. 1-14, 2020.
[15] F. Knabben, A. Ronzoni y C. Hermes, “Application of electronic expansion valves in domestic refrigerators,” International Journal of Refrigeration, vol. 119, pp. 227-237, 2020.
[16] W. Quitiaquez, I. Simbaña, A. Isaza-Roldán, C. Nieto-Londoño y F. Toapanta-Ramos, “Revisión del estado del arte de sistemas DX-SAHP para la obtención de agua caliente sanitaria,” Enfoque UTE, vol. 11, nº 2, pp. 29-46, 2020.
[17] W. Quitiaquez, I. Simbaña, C. A. Isaza-Roldán, C. Nieto-Londoño, P. Quitiaquez y L. Toapanta-Ramos, “Performance Analysis of a Direct-Expansion Solar-Assisted Heat Pump Using a Photovoltaic/Thermal System for Water Heating,” Smart Technologies, Systems and Applications, vol. 1154, pp. 89-102, 2020.
[18] W. Deng y J. Yu, “Simulation analysis on dynamic performance of a combined solar/air dual source heat pump water heater,” Energy Conversion and Management, vol. 120, pp. 378-387, 2016.
[19] G.-H. Shi, L. Aye, R. Dai, X.-J. Du y J.-J. Wang, “Dynamic modelling and performance evaluation of a direct-expansion solar-assisted heat pump for LPG vaporisation applications,” Applied Thermal Engineering, vol. 14, pp. 757-771, 2019.
[20] C. Lim y S. Sobhansarbandi, “CFD modeling of an evacuated U-tube solar collector integrated with a novel heat transfer fluid,” Sustainable Energy Technologies and Assess, vol. 52, p. 102051, 2022.
[21] N. Scuro, E. Angelo, G. Angelo y D. Andrade, “A CFD analysis of the flow dynamics of a directly-operated safety relief valve,” Nuclear Engineering and Design, vol. 328, pp. 321-332, 2018.
[22] A. Aghagoli y M. Sorin, “CFD modelling and exergy analysis of a heat pump cycle with Tesla turbine using CO2 as a working fluid,” Applied Thermal Engineering, vol. 178, p. 115587, 2020.
[23] A. Menéndez, J. Fernández y A. Meana-Fernández, “Numerical methodology for the CFD simulation of diaphragm volumetric pumps,” International Journal of Mechanical Sciences, vol. 150, pp. 322-336, 2019.
[24] J. Tu, G.-H. Yeoh y C. Liu, “Chapter 3 - Governing Equations for CFD: Fundamentals,” de Computational Fluid Dynamics, Oxford, Butterworth-Heinemann, 2018, pp. 65-124.
[25] L. Yang, N. Hua, J. Pu, Y. Xia, W. Zhou, R. Xu, T. Yang, Y. Belyavev y H. Wang, “Analysis of operation performance of three indirect expansion solar assisted air source heat pumps for domestic heating,” Energy Conversion and Management, vol. 252, p. 115061, 2022.
[26] W. Quitiaquez, I. Simbaña, C. Isaza, C. Nieto-Londoño, P. Quitiaquez y L. Toapanta-Ramos, “Comparación del rendimiento térmico de una bomba de calor de expansión directa asistida por energía solar utilizando una válvula de expansión termostática y una válvula de expansión electrónica,” X Congreso Ibérico VII Iberoamericano Ciencias y Tecnologías del Frío, pp. 54-62, 2020.
[27] B. Fabritius y G. Tabor, “Improving the quality of finite volume meshes through genetic optimisation,” Engineering with Computers, vol. 32, p. 425–440, 2016.
[28] C. Isaza-Roldán, W. Quitiaquez, C. Nieto-Londoño, L. Toapanta y I. Simbaña, “Alternative energy storage using a domestic hot water solar-assisted heat pump with PV collector/evaporator and HC refrigerant,” Refrigeration Science and Technology Proceedings, vol. 25, pp. 4827-4839, 2019.
[29] W. Quitiaquez, I. Simbaña, R. Caizatoa, C. Isaza, C. Nieto, P. Quitiaquez y F. Toapanta, “Análisis del rendimiento termodinámico de una bomba de calor asistida por energía solar utilizando un condensador con recirculación,” Revista Técnica "Energía", vol. 16, nº Issue II, pp. 111-125.

Most read articles by the same author(s)