Comparative study of the efficiency of rectangular and triangular flat plate solar collectors through finite element method

Main Article Content

Isaac Simbaña
https://orcid.org/0000-0002-3324-3071
William Quitiaquez
Patricio Cabezas
Patricio Quitiaquez

Abstract

This investigation compared the efficiency of a flat-plate solar collector with triangular and square geometry, by using the finite element method (FEM). The design of the geometries and the utilized parameters for the simulation were obtained from previous publications. SolidWorks was used to model the two collectors, meanwhile, the Fluent module of the ANSYS software was used for the simulation by the FEM. Collectors integrated a pipe of 7 mm internal diameter with a plate thickness of 11 mm; the defined material was aluminum. An ambient temperature of 20 °C was considered, with solar radiation of 1000 W·m-2 and heat transfer surfaces of 61 250 and 122 500 mm2 for the triangular and square collectors, respectively. The quality of the mesh was excellent, obtaining a skewness of 0.2486, with which efficiencies of 62 and 39 % and maximum temperatures of 27 and 25.5 °C were obtained for the triangular and square collectors, respectively. Due to the geometries performing as fins, the temperatures are higher in the corners and, therefore, achieving higher efficiency is impossible.

Downloads

Download data is not yet available.

Article Details

How to Cite
Simbaña, I., Quitiaquez, W., Cabezas, P., & Quitiaquez, P. (2024). Comparative study of the efficiency of rectangular and triangular flat plate solar collectors through finite element method. Revista Técnica "energía", 20(2), PP. 81–89. https://doi.org/10.37116/revistaenergia.v20.n2.2024.593
Section
EFICIENCIA ENERGÉTICA

References

P. Zeppini and J. C. J. M. van den Bergh, “Global competition dynamics of fossil fuels and renewable energy under climate policies and peak oil: A behavioural model,” Energy Policy, vol. 136, p. 110907, 2020, doi: 10.1016/j.enpol.2019.110907.

V. A. Ballesteros-Ballesteros and A. P. Gallego-Torres, “Modelo de educación en energías renovables desde el compromiso público y la actitud energética,” Revista Facultad de Ingeniería, vol. 28, no. 52, pp. 27–42, Jun. 2019, doi: 10.19053/01211129.v28.n52.2019.9652.

S. F. Razmi, B. Ramezanian Bajgiran, M. Behname, T. E. Salari, and S. M. J. Razmi, “The relationship of renewable energy consumption to stock market development and economic growth in Iran,” Renew Energy, vol. 145, pp. 2019–2024, 2020, doi: 10.1016/j.renene.2019.06.166.

J. E. Camacho-Quintana, J. E. Salamanca-Céspedes, and A. P. Gallego-Torres, “Induction Generator Characterization for a Medium and Low Wind-Power Generator,” Revista Facultad de Ingenieria, vol. 29, no. 54, 2020, doi: 10.19053/01211129.v29.n54.2020.10900.

A. A. Adenle, “Assessment of solar energy technologies in Africa-opportunities and challenges in meeting the 2030 agenda

and sustainable development goals,” Energy Policy, vol. 137, p. 111180, 2020, doi: 10.1016/j.enpol.2019.111180.

M. Mikati, M. Santos, and C. Armenta, “Modelado y Simulación de un Sistema Conjunto de Energía Solar y Eólica para Analizar su Dependencia de la Red Eléctrica,” Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 9, no. 3, pp. 267–281, 2012, 10.1016/j.riai.2012.05.010.

I. Visa, M. Moldovan, and A. Duta, “Novel triangle flat plate solar thermal collector for facades integration,” Renew Energy,

vol. 143, pp. 252–262, 2019, doi: 10.1016/j.renene.2019.05.021.

O. K. Ahmed, “A numerical and experimental investigation for a triangular storage collector,” Solar Energy, vol. 171, pp. 884–892, 2018, doi: 10.1016/j.solener.2018.06.097.

A. X. Andrade Cando, W. Quitiaquez Sarzosa, and L. F. Toapanta, “CFD Analysis of a solar flat plate collector with different cross sections,” Enfoque UTE, vol. 11, no. 2, pp. 95–108, Apr. 2020, doi: 10.29019/enfoque.v11n2.601.

R. Moss, S. Shire, P. Henshall, F. Arya, P. Eames, and T. Hyde, “Performance of evacuated flat plate solar thermal collectors,” Thermal Science and Engineering Progress, vol. 8, pp. 296–306, 2018, doi: 10.1016/j.tsep.2018.09.003.

M. H. Alkhafaji, B. Freegah, and M. H. Alhamdo, “Effect of riser-pipe cross section and plate geometry on the solar flat plate collector’s thermal efficiency under natural conditions,” Journal of Engineering Research, Jul. 2023, doi: 10.1016/J.JER.2023.100141.

H. Fathabadi, “Novel low-cost parabolic trough solar collector with TPCT heat pipe and solar tracker: Performance and comparing with commercial flat-plate and evacuated tube solar collectors,” Solar Energy, vol. 195, pp. 210–222, 2020, doi: 10.1016/j.solener.2019.11.057.

M. R. Saffarian, M. Moravej, and M. H. Doranehgard, “Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid,” Renew Energy, vol. 146, pp. 2316–2329, 2020, doi: 10.1016/j.renene.2019.08.081.

S. Müller, F. Giovannetti, R. Reineke-Koch, O. Kastner, and B. Hafner, “Simulation study on the efficiency of thermochromic absorber coatings for solar thermal flat-plate collectors,” Solar Energy, vol. 188, pp. 865–874, 2019, doi: 10.1016/j.solener.2019.06.064.

M. Fan et al., “A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber,” Energy Convers Manag, vol. 184, pp. 235–248, 2019, doi: 10.1016/j.enconman.2019.01.044.

W. Quitiaquez et al., “Análisis del rendimiento termodinámico de una bomba de calor asistida por energía solar utilizando un condensador con recirculación,” Revista Técnica “energía,” vol. 16, no. 2, pp. 111–125, Jan. 2020, doi: 10.37116/REVISTAENERGIA.V16.N2.2020.358.

I. Reinier et al., “The selection of a solar collector to increase the temperature of the water supply to the steam generator at the University of Cienfuegos [Online]. Available: http://rus.ucf.edu.cu/

N. H. Abu-Hamdeh, A. Khoshaim, M. A. Alzahrani, and R. I. Hatamleh, “Study of the flat plate solar collector’s efficiency for sustainable and renewable energy management in a building by a phase change material: Containing paraffin-wax/Graphene and Paraffin-wax/graphene oxide carbon-based fluids,” Journal of Building Engineering, vol. 57, p. 104804, Oct. 2022, doi: 10.1016/J.JOBE.2022.104804.

E. Bellos and C. Tzivanidis, “A detailed investigation of an evacuated flat plate solar collector,” Appl Therm Eng, vol. 234,

p. 121334, Nov. 2023, doi: 10.1016/J.APPLTHERMALENG.2023.121334.

F. J. Diez, L. M. Navas-Gracia, A. Martínez-Rodríguez, A. Correa-Guimaraes, and L. Chico-Santamarta, “Modelling of a flat-plate solar collector using artificial neural networks for different working fluid (water) flow rates,” Solar Energy, vol. 188, pp. 1320–1331, 2019, doi: 10.1016/j.solener.2019.07.022.

I. Visa et al., “Design and experimental optimisation of a novel flat plate solar thermal collector with trapezoidal shape

for facades integration,” Appl Therm Eng, vol. 90, pp. 432–443, 2015, doi: 10.1016/j.applthermaleng.2015.06.026.

D. Wang et al., “Comparative analysis of heat loss performance of flat plate solar collectors at different altitudes,” Solar Energy, vol. 244, pp. 490–506, Sep. 2022, doi: 10.1016/J.SOLENER.2022.08.060.

K. Deshmukh, S. Karmare, and P. Patil, “Experimental investigation of convective heat transfer performance of TiN nanofluid charged U-pipe evacuated tube solar thermal collector,” Appl Therm Eng, vol. 225, p. 120199, May 2023, doi: 10.1016/j.applthermaleng.2023.120199.

M. Carmona and M. Palacio, “Thermal modelling of a flat plate solar collector with latent heat storage validated with experimental data in outdoor conditions,” Solar Energy, vol. 177, pp. 620–633, Jan. 2019, doi: 10.1016/J.SOLENER.2018.11.056.

H. R. Robles-Campos, B. J. Azuaje-Berbecí, C. J. Scheller, A. Angulo, and F. Mancilla-David, “Detailed modeling of large scale photovoltaic power plants under partial shading conditions,” Solar Energy, vol. 194, pp. 485–498, Dec. 2019, doi: 10.1016/J.SOLENER.2019.10.043.

D. G. Gunjo, V. K. Yadav, D. K. Sinha, I. E. Elseesy, G. M. Sayeed Ahmed, and M. A. H. Abdelmohimen, “Development and performance evaluation of solar heating system for biogas production process,” Case Studies in Thermal Engineering, vol. 39, p. 102438, Nov. 2022, doi: 10.1016/J.CSITE.2022.102438.

J. Mustafa, S. Alqaed, and R. Kalbasi, “Challenging of using CuO nanoparticles in a flat plate solar collector- Energy saving in a solar-assisted hot process stream,” J Taiwan Inst Chem Eng, vol. 124, pp. 258–265, Jul. 2021, doi: 10.1016/J.JTICE.2021.04.003.

J. J. Fiuk and K. Dutkowski, “Experimental investigations on thermal efficiency of a prototype passive solar air collector

with wavelike baffles,” Solar Energy, vol. 188, pp. 495–506, Aug. 2019, doi: 10.1016/J.SOLENER.2019.06.030.

R. J. Xu, Y. Q. Zhao, H. Chen, Q. P. Wu, L. W. Yang, and H. S. Wang, “Numerical and experimental investigation of a compound parabolic concentrator-capillary tube solar collector,” Energy Convers Manag, vol. 204, p. 112218, Jan. 2020, doi: 10.1016/J.ENCONMAN.2019.112218.

W. Quitiaquez, J. Estupiñán-Campos, C. Nieto-Londoño, and P. Quitiaquez, “CFD Analysis of Heat Transfer Enhancement in a Flat-Plate Solar Collector/Evaporator with Different Geometric Variations in the Cross Section,” Energies (Basel), vol. 16, no. 15, p. 5755, Aug. 2023, doi: 10.3390/en16155755.

I. Simbaña, W. Quitiaquez, J. Estupiñán, F. Toapanta-Ramos, and L. Ramírez, “Evaluación del rendimiento de una bomba de calor de expansión directa asistida por energía solar mediante simulación numérica del proceso de estrangulamiento en el dispositivo de expansión,” Revista Técnica “energía,” vol. 19, no. 1, pp. 110–119, Jul. 2022, doi: 10.37116/REVISTAENERGIA.V19.N1.2022.524.

S. T. Mohammad, H. H. Al-Kayiem, M. A. Aurybi, and A. K. Khlief, “Measurement of global and direct normal solar energy radiation in Seri Iskandar and comparison with other cities of Malaysia,” Case Studies in Thermal Engineering, vol. 18, p. 100591, 2020, doi: 10.1016/j.csite.2020.100591.

E. Nadal, J. J. Ródenas, E. M. Sánchez-Orgaz, S. López-Real, and J. Martí-Pellicer, “Sobre la utilización de códigos de elementos finitos basados en mallados cartesianos en optimización estructural,” Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, vol. 30, no. 3, pp. 155–165, 2014, doi: 10.1016/j.rimni.2013.04.009.

J. G. Ardila-Marín, D. A. Hincapié-Zuluaga, and J. A. Sierra-del-Río, “Independencia de malla en tubos torsionados para intercambio de calor: caso de estudio,” Revista de la Facultad de Ciencias, vol. 5, no. 1, pp. 124–140, Jan. 2016, doi: 10.15446/rev.fac.cienc.v5n1.54231.

J. Manuel Rachel Him, L. A. Ortega, and J. Manuel González, “Actividades inmobiliarias, empresariales y de alquiler, y su efecto en la economía de Panamá.,” 2019.

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.