Despacho Económico de Sistemas de Energía en Áreas múltiples Usando Programación de Flujo de Red

Contenido principal del artículo

Luis Tipán
https://orcid.org/0000-0001-5328-8755
Orlando Vargas

Resumen

La demanda eléctrica es dinámica en el tiempo aspecto por el cual su abastecimiento debe ser una tarea primordial, razón por la cual el despacho económico (DE) busca determinar la cantidad de energía a ser entregada por todos los generadores de la manera más rentable y que a su vez cumplen una variedad de restricciones físicas y operativas en un sistema de área única. Sin embargo y por generalidad, los generadores se segregan en una serie de áreas de generación interconectadas por líneas de enlace. El despacho económico multi-área (DEM) es una escalada del despacho económico de una sola área.  En este sentido, el presente trabajo desarrolla un modelo de optimización que será resuelto mediante GAMS y determina, través de DEM, el nivel de generación y el intercambio de energía entre áreas para minimizar el costo en todas las regiones al mismo tiempo cumpliendo con las restricciones de equilibrio de energía, restricciones de reserva, restricciones de rampas de subida y bajada de potencia de cada generador y restricciones de capacidad del enlace entre las distintas áreas.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Tipán, L., & Vargas, O. (2023). Despacho Económico de Sistemas de Energía en Áreas múltiples Usando Programación de Flujo de Red. Revista Técnica "energía", 19(2), PP. 42–57. https://doi.org/10.37116/revistaenergia.v19.n2.2023.540
Sección
SISTEMAS ELÉCTRICOS DE POTENCIA

Citas

M. Steurer et al., “Investigating the Impact of Pulsed Power Charging Demands on Shipboard Power Quality,” IEEE Power Energy Soc. Gen. Meet., pp. 315–321, 2007.

M. Zare, M. Rasoul, and M. Malekpour, “International Journal of Electrical Power and Energy Systems Reserve constrained dynamic economic dispatch in multi-area power systems : An improved fireworks algorithm,” Int. J. Electr. Power Energy Syst., vol. 126, no. PA, p. 106579, 2021, doi: 10.1016/j.ijepes.2020.106579.

H. Thi and K. Tran, “Real-Coded Genetic Algorithm for Solving Multi-Area Economic Dispatch Problem,” 2013 IEEE Grenoble Conf. PowerTech, POWERTECH 2013, no. 3, pp. 97–101, 2013.

X. Lai, Q. Xia, H. Zhong, Y. Wang, and Z. Luo, “Decentralized Multi-area Look-ahead Dispatch for Cross-regional Renewable Accomodation,” 2018 IEEE/PES Transm. Distrib. Conf. Expo., pp. 1–9, 2018.

C. L. Chen and N. Chen, “Multi-area economic generation and reserve dispatch,” IEEE Power Ind. Comput. Appl. Conf., pp. 368–373, 2001, doi: 10.1109/pica.2001.932379.

R. Singh, K. Jain, and M. Pandit, “Comparison of PSO variants with traditional solvers for large scale multi-area economic dispatch,” IET Conf. Publ., vol. 2011, no. 583 CP, pp. 304–309, 2011, doi: 10.1049/cp.2011.0379.

C. Yingvivatanapong, W. J. Lee, and E. Liu, “Multi-area power generation dispatch in competitive markets,” IEEE Trans. Power Syst., vol. 23, no. 1, pp. 196–203, 2008, doi: 10.1109/TPWRS.2007.913304.

D. Streiffert, “Multi-Area Economic Dispatch with Tie Line Constraints,” IEEE Trans. Power Syst., vol. 10, no. 4, pp. 1946–1951, 1995, doi: 10.1109/59.476062.

X. Lai, L. Xie, Q. Xia, H. Zhong, and C. Kang, “Decentralized Multi-Area Economic Dispatch via Dynamic Multiplier-Based Lagrangian Relaxation,” IEEE Trans. Power Syst., vol. 30, no. 6, pp. 3225–3233, 2015, doi: 10.1109/TPWRS.2014.2377755.

A. G. Vlachos and P. N. Biskas, “Balancing supply and demand under mixed pricing rules in multi-area electricity markets,” IEEE Trans. Power Syst., vol. 26, no. 3, pp. 1444–1453, 2011, doi: 10.1109/TPWRS.2010.2079338.

M. Sehrawat and J. S. Lather, “Multi Area Economic Dispatch Using Distributed Intelligence,” Integr. Distrib. Energy Resour. Power Syst., 2019.

M. Basu, “Multi-area dynamic economic emission dispatch of hydro-wind-thermal power system,” Reinf. Plast., vol. 28, no. March, pp. 11–35, 2019, doi: 10.1016/j.ref.2018.09.007.

Z. Li, M. Shahidehpour, W. Wu, B. Zeng, B. Zhang, and W. Zheng, “Decentralized Multiarea Robust Generation Unit and Tie-Line Scheduling under Wind Power Uncertainty,” IEEE Trans. Sustain. Energy, vol. 6, no. 4, pp. 1377–1388, 2015, doi: 10.1109/TSTE.2015.2437273.

U. Fragomeni, “Direct Method to Multi-Area Economic Dispatch,” IEEE Trans. Power Syst., no. 4, pp. 1–5, 2012.

R. Azami and A. F. Fard, “Impact of demand response programs on system and nodal reliability of a deregulated power system,” 2008 IEEE Int. Conf. Sustain. Energy Technol. ICSET 2008, pp. 1262–1266, 2008, doi: 10.1109/ICSET.2008.4747200.

CONELEC, “Estudio y gestión de la demanda eléctrica - El Plan Maestro de Electrificación,” pp. 29–55, 2013.

A. Ayub, “Planeación de la Operación de Sistemas Eléctricos de Potencia,” J. Electr. Syst. Inf. Technol., 1999.

S. T. Lee, “A New Vision for Transmission Operation and Planning Under An Open Power Market,” IEEE Trans. Power Deliv.

J. Wu et al., “Study on medium and long-term generation expansion planning method considering the requirements of green low-carbon development,” Asia-Pacific Power Energy Eng. Conf. APPEEC, vol. 2018-Octob, pp. 689–694, 2018, doi: 10.1109/APPEEC.2018.8566580.

Y. Kim, “Multicriteria Generation-Expansion Considerations,” IEEE Trans. Eng. Manag., vol. 40, no. 2, pp. 154–161, 1993.

J. Carrera, “Óptima Planificación de la expansión de generación eléctrica usando GAMS,” Tesis, vol. 1, pp. 66–80, 2017.

R. Navarro, “Short and Medium Term Operation Planning in Electric Power Systems,” IEEE Trans. Power Syst., pp. 1–8, 2009.

Y. Ding, C. Singh, and L. Goel, “Short-Term and Medium-Term Reliability Evaluation for Power Systems With High Penetration of Wind Power,” IEEE Trans. Sustain. Energy, vol. 5, no. 3, pp. 896–906, 2014.

B. G. Alhogbi, “A Probabilistic Based Hybrid Planning Method for Long-Term Power System Planning,” J. Chem. Inf. Model., vol. 53, no. 9, pp. 21–25, 2017, [Online]. Available: http://www.elsevier.com/locate/scp.

A. A. A. El-Ela, S. M. Allam, S. S. Rabah, and M. M. S. Ahmed, “Optimal Long Term Planning of Hybrid Generation System for a Part of Egyptian Network,” 2018 20th Int. Middle East Power Syst. Conf. MEPCON 2018 - Proc., pp. 918–922, 2019.

Q. Zhang, M. Wang, X. Wnag, and S. Tian, “Mid-long term optimal dispatching method of power system with large-scale wind-photovoltaic-hydro power generation,” Electr. Power Syst. Res., 2017.

T. Guoqing, M. Ieee, L. I. U. Fu-bin, L. I. Yang, W. Bin, and F. U. Rong, “Risk-Based Assessment and Decision Making of Power System Security in Power Market,” 2014 IEEE Conf. Electr. Util. Deregulation, Restruct. Power Technol., no. April, pp. 551–555, 2004.

L. Silva, “Despacho económico de potencia diaria aplicado al Sistema Nacional Ecuatoriano,” Tesis, p. 30, 2011.

M. Musau, “Multi Area Multi Objective Dynamic Economic Dispatch with Renewable Energy and Emissions,” 2016.

A. Ahmadi-khatir, A. J. Conejo, R. Cherkaoui, and S. Member, “Multi-Area Unit Scheduling and Reserve Allocation Under Wind Power Uncertainty,” vol. 29, no. 4, pp. 1701–1710, 2014.

Z. Li, W. Wu, B. Zhang, and H. Sun, “Dynamic Economic Dispatch Using Lagrangian Relaxation With Multiplier Updates Based on a Quasi-Newton Method,” IEEE Trans. Power Syst., vol. 28, no. 4, pp. 4516–4527, 2013.

S. Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over Scheduling Period,” IEEE Syst. Journals, vol. 9, no. 4, pp. 1440–1451, 2015.

H. Son, J. Kim, I. Bae, and T. T. C. M. Thermal, “Evaluation of Optimal Transfer Capability in Power system interconnection,” IEEE Trans. Power Syst., no. 3, pp. 1–5, 2009.

C. Wang, S. M. Shahidehpour, and S. Member, “Power Generation Scheduling for Multi-Area Hydro-Thermal Systems with tie Line Constraints, Cascaded Reservoirs and Uncertain Data,” IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1333–1340, 1993.

A. Conejo and J. Aguado, “Multi-Area Coordinated Decentraliced DC Optimal Power,” IEEE Trans. Power Syst., vol. 13, no. 4, pp. 1272–1278, 1998.

N. Yorino, H. M. Hafiz, Y. Sasaki, and Y. Zoka, “High-Speed Real-Time Dynamic Economic Load Dispatch,” IEEE Trans. Power Syst., vol. 27, no. 2, pp. 621–630, 2012.

Y. Liu and N. C. Nair, “A Two-Stage Stochastic Dynamic Economic Dispatch Model Considering Wind Uncertainty,” IEEE Trans. Sustain. Energy, vol. 7, no. 2, pp. 819–829, 2016.

S. Kar, I. Member, G. Hug, and I. Member, “Distributed Robust Economic Dispatch in Power Systems : A Consensus + Innovations Approach,” IEEE Trans. Power Syst., pp. 1–8, 2012.

D. W. Ross and S. Kim, “Dynamic Economic Dispatch of Generation,” IEEE Trans. Power Appar. Syst., no. 6, pp. 2060–2068, 1980.

A. Kargarian, S. Member, Y. Fu, S. Member, P. Liu, and S. Member, “A System of Systems Engineering Approach for Unit Commitment in Multi-Area Power Markets,” pp. 1–5, 2014.

Artículos similares

También puede {advancedSearchLink} para este artículo.