Identification Methodology of Oscillatory Modes in PMU Measurement Ambient Type Data

Main Article Content

Graciela Colomé
https://orcid.org/0000-0002-2926-5366
Omar Ramos
https://orcid.org/0000-0002-8472-9370
Diego Echeverría
https://orcid.org/0000-0002-1743-9234

Abstract

The aim of this work is to put forward a methodology to evaluate the oscillatory stability of a power electric system (PES) analyzing the low-frequency oscillatory modes (LFOM) through the processing of synchrophasor measurements Phasor Measurement Units (PMU) of ambient data. The proposed methodology, based on spectral and pseudo-energy analyses and on parametric methods of Canonical Correlation Analysis and Yule-Walker, estimates the LFOM, whose frequency and damping characteristics provide critical information to PES operators to carry out preventive or emergency control actions. The proposed methodology was applied to synthetic measurements for its tuning and to characterize its range and accuracy, and to PMU records of the Ecuadorian power transmission system, successfully identifying the 0.4 Hz inter-area mode of the Ecuador-Colombia interconnection. The contributions of this work are aimed at evaluating the oscillatory stability of the PES through automatic computational tool that processes PMU signals of ambient type data.

Downloads

Download data is not yet available.

Article Details

How to Cite
Colomé, G., Ramos, O., & Echeverría, D. (2024). Identification Methodology of Oscillatory Modes in PMU Measurement Ambient Type Data. Revista Técnica "energía", 21(1), PP. 55–64. https://doi.org/10.37116/revistaenergia.v21.n1.2024.650
Section
SISTEMAS ELÉCTRICOS DE POTENCIA

References

P. Kundur, O. Malik, “Power System Stability and Control, Mac Graw Hill, 2022.

R. Bialecki, “Identificação em tempo real de Oscilações Eletromecânicas utilizando Sincrofasores,” M.S. thesis, Dept. Ingeniería Eléctrica, Universidad Federal de Santa Catarina, Florianopolis, Brasil, 2014.

L. Dosiek, N. Zhou, J. W. Pierre, Z. Huang, and D. J. Trudnowski, “Mode shape estimation algorithms under ambient conditions: A comparative review,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 779–787, 2013.

J. Ni, C. Shen, and F. Liu, “Estimation of the electromechanical characteristics of power systems based on a revised stochastic subspace method,” Sci. China Technol. Sci., vol. 55, no. 6, pp. 1677–1687, 2012.

H. R. Ali, “Inter-Area power oscillation identification using synchronized ambient and ringdown data,” Proc. - 2013 Int. Conf. Inf. Technol. Electr. Eng., 2013.

I. C. Decker, A. S. Silva, M. N. Agostini, F. B. Prioste, B. T. Mayer, and D. Dotta, “Experience and applications of phasor measurements to the Brazilian interconnected power systemz,” Eur. Trans. Electr. Power, pp. 1557–1573, 2011.

J. W. Pierre, “Initial results in electromechanical mode identification from ambient data,” IEEE Trans. Power Syst., no. 3, pp. 1245–1251, 1997.

M. Anderson, N. Zhou, J. Pierre, and R. Wies, “Bootstrap-based confidence interval estimates for electromechanical modes from multiple output analysis of measured ambient data,” IEEE Power Eng. Soc. Gen. Meet., 2005.

L. Dosiek, D. J. Trudnowski, and J. W. Pierre, “Model order sensitivity in ARMA-based electromechanical mode estimation algorithms under ambient power system conditions,” IEEE Power Energy Soc. Gen. Meet., 2018.

P. D. Welch, “The Use of Fast Fourier Transform for the Estimation of Power Spectra,” Digit. Signal Process., No. 2, pp. 532–574, 1975.

R. Bialecki, “Identificação em tempo real de Oscilações Eletromecânicas utilizando Sincrofasores,” M.S. Thesis, Dept. Ingeniería Eléctrica, Univ. Federal de Santa Catarina, Florianopolis, Brasil, 2014.

J. Guo, H. Liu, D. Zhou, J. Chai, Y. Zhang and Y. Liu, "Real-time power system electromechanical mode estimation implementation and visualization utilizing synchrophasor data", 2016 IEEE/PES T&D, 2016, pp. 1-5, doi: 10.1109/TDC.2016.7519893..

D. J. Viscarra and D. G. Colomé, “Determination of oscillatory modes in the SADI from the analysis of PMU measurements in Low Voltage”, presented at the XIII CLAGTEE, Santiago de Chile, 20-23 Oct 2019.

D. J. Viscarra and D. G. Colomé, “Distributed Parametric Identification of Low Frequency Oscillatory Modes in Multiple PMU”, presented at the IEEE T&D LA, Montevideo, Uruguay, 29 Set - 1 Oct. 2020.

Anderson. J et al., “Phase Angle Calculations: Considerations and Use Cases,” NASPI Eng. Anal. Task Team Tech. Pap., vol. 6, no. September, pp. 1–36, 2016, [Online]. Available: https://www.naspi.org/sites/default/files/reference_documents/naspi_2016_tr_006_phase_angle_calculations_final.pdf.

O. Ramos and D. G. Colomé, “Determination of oscillatory modes in the SADI from the analysis of PMU measurements of ambient data in Low Voltage”, Rev. Técnica “Energía”, vol 18, No 1, pp 48-58, 2021. doi: https://doi.org/10.37116/revistaenergia.v18.n1.2021.467

A. F. Quinaluiza and D. E. Echeverría, “Análisis de Estabilidad de Pequeña Señal Utilizando Mediciones Sincrofasoriales PMU,” Rev. Técnica “Energía,” vol. 10, no. 1, pp. 123–132, 2014, doi: 10.37116/revistaenergia.v10.n1.2014.107.

J. C. Cepeda and A. B. D. La Torre, “Monitoreo de las oscilaciones de baja frecuencia del Sistema Nacional Interconectado a partir de los registros en tiempo real,” Rev. Técnica “Energía,” vol. 10, No. 1, pp. 181–190, 2014, doi: 10.37116/revistaenergia.v10.n1.2014.114.

O. Ramos, C. Juarez, D. Viscarra, D.G. Colomé, “Identificación Paramétrica de Modos Oscilatorios Poco Amortiguados o Inestables en Registros De Mediciones PMU”, presented at the XIX ERIAC Encontro Regional Ibero-Americano do CIGRE, Foz do Iguazú, Brasil, 21-25 mayo 2023.

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.